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(4) Introduction 

 Mammographic screening ha s b een re cognized a s the most effective method for early 
detection of breast cancer1-4. Studies indicate that radiologists do not detect all  carcinomas that 
are visible upon retrospective analyses of the images5-10. Various methods are being developed to 
improve the sensitivity and specificity of breast cancer detection. Double reading can reduce the 
miss rate of radiographic reading.  However, double-reading by radiologists is costly. Computer-
aided diagnosis (CAD) is considered to be one of the promising approaches that may improve 
the efficacy o f ma mmography11, 12 . It h as b een shown that CAD can im prove ra diologists’ 
detection accuracy significantly13-16. Our receiver operating characteristic (ROC) st udy17, 1 8 and 
that by Jiang et al.17, 18 also showed that computer classifiers can improve radiologists’ ability in 
differentiating malignant and benign masses or  microcalcifications. CAD is thus a viable cost-
effective alternative to double reading by radiologists. 

 Most of th e CA D systems developed s o far are bas ed on ra diologists’ markers o n 
mammograms whic h were proved to  be  cancer w ith bio psy. Some researchers19-23 ha ve 
investigated the performance change of CAD syst ems when using prior mammograms (i.e., the 
mammograms in previous exams on which the cancer can be seen retrospectively but was called 
negative o r probably be nign at t he time of the exam). The a bility o f a CAD s ystem to detect 
these can cers i s i mportant because it sign ifies early detection of ca ncers t hat radiologists may  
overlook. On the other hand, when a CAD system is a pplied to a new mammogram in clinical 
practice, it has  to de tect bre ast lesions of all d egrees of  subtlety effectively. Our e xperiences 
indicate that  it i s difficult to trai n a singl e CAD system t o prov ide optimal det ection for all 
lesions over the entire spectrum of subtlety because the classifiers have to make compromises to 
accommodate cancers of a wide range of characteristics.  

 The goal of this  proposed project is  to develop a CAD system using advanced computer 
vision te chniques aim ing at im proved det ection of retros pectively see n cancers on prior 
mammograms and incorporate the developed CAD system into our current CAD system.  We 
hypothesize t hat a du al CAD system, which combines a sy stem tr ained with  subtle lesions 
retrospectively seen on pr ior m ammograms an d a s ystem tra ined with cancers de tected on 
current ma mmograms, shou ld increase th e se nsitivity of d etecting can cers at  the early stag e 
without compromising its ability to detect less subtle cancers.  To accomplish this goal, we have 
performed the following tasks: (1) collection of a large database of masses on digitized prior and 
current film mammograms (DFMs) for training and testing the CAD system, (2) development of 
single-view computer vision techniques for mass detection and classification in prior DFMs, (3) 
reduction of false positives (FPs) by  c orrelation of i mage i nformation fro m multiple-view 
mammograms, (4) development of a dual system scheme which combines the new CAD system 
with our current CAD system without an increase in overall FPs, and (5) evaluation of the effects 
of the developed CAD with a large data set in detecting both average and subtle cancers.  

 It is e xpected that we will develop a fully automated CAD system which can be used for 
detection of masses o n DFMs. Alt hough we do n ot p lan to  de velop s uch a s ystem f or di gital 
mammograms because there will not be enough prior digital mammograms with missed cancers 
available for the development, the general methodology developed in thi s study can be adapted 
to CAD systems for  digital mammograms in the future. The significance of this project is that 
have a ccomplished t he goal of  de veloping a CAD system whic h ca n further im prove 
radiologists’ accuracy in detecting breast cancers at a n ea rly s tage.  Sinc e early detection and 
treatment can reduce breast cancer mortality rate, the CAD sy stem will be useful for in creasing 
the effectiveness of mammographic screening.  
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(5) Body 

This is the final re port of t his project.  We ha ve d escribed i n detail the res ults o f our 
studies in the p ast annu al progress repo rts.  The in vestigations conducted in this project ar e 
summarized in the following. 

(5.A) Collection of a data set of mammograms (Task I) 

With IRB approval, we ha ve collected a d atabase of digitized screen-film mammogram 
(DFM) from patient files in the Department of Radiology at the University of Michigan.  In this 
study, we collected the mass data set c ontained 220 cases with masses.  Each case included the 
current mammograms o n wh ich th e m ass was d etected by  r adiologists, and th e prior 
mammograms obtained from previous exams.  The mass set contained 440 current mammograms 
and 496 prior mammograms.  The true  location of each mass was identified by a n experienced 
Mammography Quality Standards Act (MQSA) rad iologist.  Th e radiologist also  measured the  
mass size and provided descriptions of the mass margin, shape, conspicuity, and breast density.   

(5.B) Development of single-view computer vision techniques for mass detection and 
classification on prior mammograms (Task II) 

 In this p roject, w e h ave de veloped a  series of com puter vis ion techniques for mass 
detection on single-view mammograms.  We  have newly developed a two-stage gradient f ield 
analysis method which uses not only the shape information of masses on mammograms but also 
incorporates a second stage in which the gray level information of the local object segmented by 
a region growing technique is refined by gradient field analysis.  In comparing with spatial gray 
level dependence (SGLD) texture fea tures extra cted fro m cu rrent ma mmograms, we e xtracted 
gray level features and run length statistics analysis (RLS) texture features inside and outside of 
the mass region on both the original image and gradient fie ld image from prior mammograms.  
In CAD applications, a n im portant step i s t o des ign a c lassifier f or t he differentiation of the 
abnormal from the normal structures.  In this project, we have also investigated the performance 
of a  regularized discriminant analysis (RDA) c lassifier in  combination with  a fea ture se lection 
method for classification of the masses and normal tissues detected on mammograms.  We have 
applied th ese c omputer vision tech niques to m ass det ection on both full field di gital 
mammograms (FFDM) a nd DFMs.   We found that th ey were very useful and c onsistent for 
improving the accuracy of mass detection on both FFDMs and DFMs.  (Publications: J1, J3, P1, 
P4, P5) 

(5.C) Reduction of FPs by correlation of image information from multiple view 
mammograms (Task III) 

 In mammographic screening, a craniocaudal (CC) and  a me diolateral oblique (MLO) o r 
lateral (LAT) view are generally taken for each breast.  The two views not only allow most of the 
breast tissue to be imaged but also improve the chance that a lesion will be seen in at least one of 
the views.  The radiologist uses the two views to confirm true positives (TPs) and to reduce false 
positives (FPs).  In an ef fort to improve the performance of  our single CAD system, we have 
conducted sev eral stu dies by using m ultiple view information of th e sam e patient.  We first 
developed a tw o-view information f usion m ethod w hich combines the inf ormation from two 
mammographic views of the same breast.  Then, we investigated an FP reduction method based 
on analysis of bilateral mammograms.  We  ha ve a lso developed a  f our-view CAD system to 
improve the performance of mass detection for our computerized detection system.  We  found 
that our multiple v iew CAD sy stem significantly improved the accuracy for mass d etection on 
mammograms.  (Publications J4, J5, P3, A3, A4, A7) 
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(5.D) Development of a information fusion scheme to combine the new CAD system 
with the existing CAD system for mass detection (Task IV) 

 In this project, we have developed a dual system scheme which combined a CAD system 
optimized with “ average” masses with  another CAD sy stem o ptimized with  “ subtle” masses.  
The two single CAD systems for mass detection have similar image processing steps and were 
trained: one with the current m ammograms and the other with the prior mammograms.  A  feed-
forward backpropagation artificial neural network (BP-ANN) was trained to classify the masses 
from normal tissues by combining the output information from the two single CAD systems.  In 
this ANN, the nodes are organized in an input layer, an output layer, and one hidden layers.  The 
two linear discriminant analysis (LDA) scores from the two CAD systems were used as input to 
the BP-ANN. The BP-ANN has two input nodes, a single hidden layer with 3 hidden nodes, and 
one output node.  The nodes are interconnected by weights and information propagates from one 
layer t o the next through a l og-sigmoidal t ransform f unction.  Th e le arning of the A NN is a 
supervised process in which known training cas es are in put to the ANN.  The performance 
function for the feedforward network was the mean-square error which was the average squared 
error between the network outputs and the target values over all training samples.  The gradient 
of the performance function was used to det ermine how to adj ust the weights to minimize the 
error.  The gradient is determined using an iterativ e backpropagation procedure which involves 
performing computations backward through the network.  We found that the ANN fusion scheme 
can pro vide si gnificant improvement in  the accuracy o f t he mass detection CAD system in 
comparison with that of a single CAD system.  (Publications J2, P2, A1, A2, A5, A6) 

(5.E) Evaluation of the proposed CAD system with a large data set (Task V) 

 The detection of masses on mammograms is a challenging task because the overlapping 
fibroglandular t issue ma y m imic a mass o r ob scures the  lesion.  Alth ough researchers h ave 
devoted e xtensive efforts to t he development o f CAD  s ystems for m ass d etection, the  
performances of c urrent C AD s ystems are far f rom idea l.  We have developed a dual s ystem 
approach and a four-view analysis method.  In the end of this project, we have combined the dual 
system approach with the four-view approach and collected a relatively large data set to evaluate 
the effectiveness o f our  four-view dual CAD system .  Besides t he data set co llected in  this 
project, we also included 369 patients collected by our previous projects.  In total, we used 589 
patients including a mass set with 389 patients and a normal set with 200 patients in this study. 
Each patient had two views (CC and MLO/LAT) for each breast.  The overall test performance 
was assessed by the free response receiver operating characteristic (FROC) curves.  It was found 
that our the four-view dual CAD system achieved an FP rate of 1.04, 0.80, and 0.60 FPs/image at 
the case-based sensitivities of 90%, 85% and 80%, respectively, which represents a statistically 
significant improvement ov er the conv entional singl e-view detection a pproach, using the 
Jackknife alternative FROC (JAFROC) method..  (Publications J5, A7) 

 

(6) Key Research Accomplishments 

• Collected 220 cases DFMs with 93 6 m ammograms fo r tra ining an d testing the  
computerized detection systems (Task I). 

• Developed a series of computer vision techniques for mass detection and classification on 
single-view mammograms (Task II). 

• Developed a four-view CAD system for mass detection (Task III). 

• Developed a dual system approach for mass detection (Task IV). 



 

 7

• Combined th e du al system approach with four-view app roach and ev aluated t he 
combined system with a relatively large data set (Task V). 

 

(7) Reportable Outcomes 

As a res ult of the suppor t by the USAMRMC BCRP grant, we have developed a  du al 
system approach with four-view analysis which significantly improved the performance of mass 
detection on mammograms in comparison with the conventional single-view detection approach.  
The publications from this project are lis ted be low.  Many of these have been reported in the 
previous annual reports. 

Journal Articles: 

J1. Wei, J., Sahiner, B., Hadjiiski, L. M., Chan, H. P., Petrick, N., Helvie, M. A., Roubidoux, 
M. A ., G e, J. and Zhou , C. , " Computer aided  detection of b reast masses on full field 
digital mammograms," Medical Physics 32, 2827-2838 (2005). 

J2. Wei, J., Cha n, H .-P., Sahiner, B. , Hadjiiski, L . M. , Helvie, M.  A., Roubidoux, M.  A ., 
Zhou, C. and Ge, J., "Dual system approach to computer-aided detection of breast masses 
on mammograms," Medical Physics 33, 4157-4168 (2006). 

J3. Wei, J., Hadjiiski, L. M., Sahiner, B., Chan, H. P., Ge, J., Roubidoux, M. A., Helvie, M. 
A., Zhou , C., Wu , Y. T., Paramagul, C. and Zhang, Y., "Co mputer aid ed detection 
systems f or br east masses: Com parison o f pe rformances on full-field d igital 
mammograms and digitized screen-film mammograms," Academic Radiology 6, 659-669 
(2007). 

J4. Wu, Y.-T., Wei, J., Hadjiiski, L. M., Sahiner, B., Zhou, C., Ge, J., Shi, J., Zhang, Y. and 
Chan, H. P.,  "Bi lateral analysis based fals e positive reduct ion for computer-aided mass 
detection," Medical Physics 34, 3334-3344 (2007). 

J5. Wei, J., Chan, H.-P., S ahiner, B., Zhou, C., Hadjiiski , L. M., Roubidoux, M. A. and  
Helvie, M. A. , "C omputer-aided detection of b reast m asses on m ammograms: D ual 
system approach with two-view analysis," Medical Physics (Accepted).   

Conference Proceeding: 

P1. Wei, J., Sahi ner, B., Hadjiiski, L. M., Chan, H.-P., Petri ck, N., Helvie, M. A., Zhou, C. 
and Ge, Z ., " Computer ai ded detection of breas t masses on full-field digital 
mammograms: False positive reduction using gradient field analysis," Proc. SPIE 5370, 
992-998 (2004). 

P2. Wei, J., Sahiner, B., Hadjiiski, L. M., Chan, H. P., A, H. M., A, R. M., Petrick, N., Zhou, 
C. a nd Ge, J. , "C omputer aided de tection o f br east masses o n m ammograms: 
Performance improvement using a dual system," Proc. SPIE 5747, 9-15 (2005). 

P3. Wei, J., Sahiner, B., Ha djiiski, L. M., Chan,  H.-P.,  Hel vie, M. A. , R oubidoux, M.  A., 
Zhou, C.,  Ge, J. and Zha ng, Y., "T wo-view inf ormation fusion for improvement of 
computer-aided detection (CAD) of breast masses on mammograms," Proc. SPIE 6144, 
241-247 (2006). 
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P4. Wei, J., Sahiner, B., Zhang, Y., Chan, H.-P., Hadjiiski, L. M.,  Zhou, C., Ge, J. and Wu, 
Y.-T., " Regularized discriminate a nalysis for breast mass de tection on full f ield digital 
mammograms," SPIE Proc. 6144, 5P1~5P6 (2006). 

P5. Wei, J., Sahiner, B., Chan, H. P., Hadjiiski, L. M., Roubidoux, M. A., Helvie, M. A., Ge, 
J., Z hou, C. an d W u, Y.-T., " Computer-aided detection o f breast masses o n prior 
mammograms," Proc. SPIE 6514, 651405-651407 (2007). 

Conference Abstracts and Presentations: 

A1. Wei, J., Sahiner, B., Hadjiiski, L. M., Chan, HP., Helvie, M. A., Roubidoux, M. A., “A 
dual c omputer-aided detection (C AD) system for im provement of m ass detection o n 
mammograms”, Presentation at t he 90th Scientific Assem bly and Annual Meeting of the 
Radiological Society of North America, Chicago, IL, November 28-December 3, 2004. 

A2. Wei, J., Sahiner, B., Had jiiski, L. M., Chan, HP., Helvie, M. A., Roub idoux, M. A., “A 
dual sy stem fo r improvement of computer-aided ma ss d etection on mammograms”, 
Presentation a t U. S. Army  Me dical Research and Ma teriel Co mmand, Department o f 
Defense, Breast Cancer Research Program, Phil., PA, June 8-11, 2005. Proceedings book 
p. 111. 

A3. Wu, YT., Wei, J.,  Hadjiiski, L. M., Sahi ner, B., Zhou , C., Chan, HP., “ Bilateral CAD 
system for br east mass d etection on m ammograms”, Presentation a t t he 92 nd Scientific 
Assembly and Annual Meeting of the Radiological Society of North America, Chicago, 
IL. November 26-December 1, 2006. 

A4. Wei, J., Sahiner, B., Chan, HP., Roubidoux, M. A., Helvie, M. A., Wu, YT., Hadjiiski, L. 
M., Ge, J. , Z hou, C., “ Computer-aided detection of  bre ast m asses on m ammograms: 
Performance im provement using t wo-view i nformation”, Prese ntation at the 92nd 
Scientific Assembly and Annual M eeting of the Radiological Society of North America, 
Chicago, IL. November 26-December 1, 2006. 

A5. Wei, J., Chan, HP., Sa hiner, B., Hadjiiski, L. M., Helv ie, M. A., Ro ubidoux, M. A., 
Zhou, C., Ge, J., Wu, YT., Zhang, Y., “Dual system approach for improvement of subtle 
mass d etection o n mammograms: Improving p rescreening with H essian analysis”, 93rd 
Scientific Assembly and Annual M eeting of the Radiological Society of North America, 
RSNA 2007. 

A6. Wei, J., Chan, HP., Sa hiner, B., Hadjiiski, L. M., Helv ie, M. A., Ro ubidoux, M. A., 
“Dual-system two- view a pproach f or c omputer-aided detection of breast m asses o n 
mammograms”, Era of Hope 2008, Proceedings book p. 54. 

A7. Wei, J., Chan, HP., Wu, YT., Sahiner, B., Hadjiiski, L. M., Helvie, M. A., C, Zhou, et.al., 
“Four-view Co mputer-aided De tection (CAD) Sy stem fo r Bre ast Masses on  
Mammograms”, 94 th Sci entific Assem bly and An nual Meet ing of the Radi ological 
Society of North America, RSNA 2008. 

 

(8) Conclusions 

In this project, we have developed a dual CAD system, which combined a C AD system 
optimized with “average” masses with another CAD system optimized with “subtle” masses, for 
mass detection on mammograms.  Our studies showed that the improvement in the FROC curves 
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by the du al system approach was stati stically sign ificant (p<0.05) for the dete ction o f bot h 
average masses and sub tle masses using JAFROC m ethod.  In addi tion, we have developed a 
four-view approach to improve computerized detection of breast masses on mammograms.  We 
have evaluated our approach by us ing a relatively large data set.  Our results indicate that the 
proposed approach is a ble to fu rther improve the  detection performance as est imated by the 
JAFROC analysis.  The significance of this project is that the newly developed CAD system may 
be able to aid radiologists in detecting breast cancers at an early stage.  Since early detection and 
treatment c an re duce breast ca ncer m ortality r ate a nd health care c osts, the proposed C AD 
system will improve the efficacy of mammography for breast cancer screening. 
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We are developing a computer-aided detection �CAD� system for breast masses on full field digital
mammographic �FFDM� images. To develop a CAD system that is independent of the FFDM
manufacturer’s proprietary preprocessing methods, we used the raw FFDM image as input and
developed a multiresolution preprocessing scheme for image enhancement. A two-stage prescreen-
ing method that combines gradient field analysis with gray level information was developed to
identify mass candidates on the processed images. The suspicious structure in each identified region
was extracted by clustering-based region growing. Morphological and spatial gray-level depen-
dence texture features were extracted for each suspicious object. Stepwise linear discriminant
analysis �LDA� with simplex optimization was used to select the most useful features. Finally,
rule-based and LDA classifiers were designed to differentiate masses from normal tissues. Two data
sets were collected: a mass data set containing 110 cases of two-view mammograms with a total of
220 images, and a no-mass data set containing 90 cases of two-view mammograms with a total of
180 images. All cases were acquired with a GE Senographe 2000D FFDM system. The true
locations of the masses were identified by an experienced radiologist. Free-response receiver oper-
ating characteristic analysis was used to evaluate the performance of the CAD system. It was found
that our CAD system achieved a case-based sensitivity of 70%, 80%, and 90% at 0.72, 1.08, and
1.82 false positive �FP� marks/image on the mass data set. The FP rates on the no-mass data set
were 0.85, 1.31, and 2.14 FP marks/image, respectively, at the corresponding sensitivities. This
study demonstrated the usefulness of our CAD techniques for automated detection of masses on
FFDM images. © 2005 American Association of Physicists in Medicine.
�DOI: 10.1118/1.1997327�

Key words: computer-aided detection, full field digital mammogram �FFDM�, multiresolution im-
age enhancement, gradient field analysis, stepwise linear discriminant analysis
I. INTRODUCTION

Breast cancer is one of the leading causes of death among
American women between 40 and 55 years of age.1 It has
been reported that early diagnosis and treatment can signifi-
cantly improve the chance of survival for patients with breast
cancer.2–4 Although mammography is the best available
screening tool for detection of breast cancers, studies indi-
cate that a substantial fraction of breast cancers that are vis-
ible upon retrospective analyses of the images are not de-
tected initially.5–8 Computer-aided diagnosis �CAD� is
considered to be one of the promising approaches that may
improve the sensitivity of mammography.9,10 Computer-
aided lesion detection can be used during screening to reduce
oversight of suspicious lesions that warrant further work-up.
Computer-aided lesion characterization can assist in the esti-
mation of the likelihood of malignancy of lesions by using
image and/or other information during the diagnostic stage.
The majority of studies to date show that CAD can improve
radiologists’ lesion detection sensitivity,11–16 although Gur et
al.17 found that CAD had no significant effect on the radi-
ologists in their academic setting when they averaged the
results from both low-volume and high-volume radiologists.
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Further analysis of Gur’s data by Feig et al. indicated that
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the 17 low-volume radiologists in Gur’s study achieved simi-
lar increase in sensitivity as reported in other studies. The
outcome of CAD studies therefore depends on the study de-
sign and data analysis.

A number of investigators have reported CAD algorithms
for detection of masses on mammograms. Their approaches
to prescreening of mass candidates were based primarily on
mass characteristics including: �1� asymmetric density be-
tween left and right mammograms,19–22 �2� texture,23,24 �3�
spiculation,25,26 �4� gray level contrast,27–31 and �5�
gradient.32 Some of these approaches were refined with a
combination of the mass characteristics. Feature classifiers
were then used to further differentiate masses from normal
breast tissues.

Most mammographic CAD algorithms developed so far
are based on digitized screen-film mammograms �SFMs�. In
the last few years, full field digital mammographic �FFDM�
technology has advanced rapidly because of the potential of
digital imaging to improve breast cancer detection. Several
manufacturers have obtained clearance from the FDA for
clinical use. It is expected that FFDM detectors will provide
higher signal-to-noise ratio �SNR� and detective quantum ef-

ficiency, wider dynamic range, and higher contrast sensitivity

2827„9…/2827/12/$22.50 © 2005 Am. Assoc. Phys. Med.



2828 Wei et al.: Computer-aided detection of masses on digital mammograms 2828
than digitized mammograms. The spatial resolution of digital
detectors may also be different from that of digitized SFMs
even when their pixel pitches are equal. Li et al. investigated
the performance of their CAD system on mass detection that
was developed for SFMs and modified for FFDMs.33 Their
preliminary results on a small data set showed that it
achieved 60% sensitivity at 2.47 false positives �FPs�/image.
It is expected that proper adaptation based on the imaging
characteristics of FFDMs and re-training of the CAD system
with FFDMs would improve the performance. Because of
the higher SNR and linear response of digital detectors, there
is also a strong potential that more effective feature extrac-
tion techniques can be designed to optimally extract signals
from the image and improve the accuracy of CAD. Several
commercial CAD systems already obtained FDA approval
for use with FFDMs. The commercial CAD systems gener-
ally reported similar performance on FFDMs and SFMs.
However, their study was not reported in peer-reviewed jour-
nals so that the data set and algorithm are unknown. Re-
cently, an assessment study34 to compare the performance of
two commercial and one research CAD system for SFMs
showed that their mass detection sensitivities ranged from
67% to 72% and the FP rates ranged from 1.08 to 1.68 per
four-view examinations. The differences in sensitivities were
not significant whereas the differences in the FP rates were
significant, depending on the examinations and CAD sys-
tems used.34

We have developed a CAD system for the detection of
masses on SFMs in our previous studies.30,35,36 We are de-
veloping a mass detection system for mammograms acquired
directly by a FFDM system. In this study, we adapted our
mass detection system developed for SFMs to FFDMs by
optimizing each stage and retraining. In an effort to develop
a CAD system that is less dependent on the FFDM manufac-
turer’s proprietary preprocessing methods, we used the raw
FFDM as input and developed a multiresolution preprocess-
ing scheme for image enhancement. A new technique was
also designed for prescreening of mass candidates on the
preprocessed images.

II. MATERIALS AND METHOD

A. Data sets

The mammograms were collected from patient files at the
Department of Radiology with Institutional Review Board
approval. Digital mammograms at the University of Michi-
gan are acquired with a GE Senographe 2000D FFDM sys-
tem. The GE system has a CsI phosphor/a :Si active matrix
flat panel digital detector with a pixel size of 100 �m
�100 �m and 14 bits per pixel. In this study, we used two
data sets: a mass set containing FFDMs with malignant or
benign masses and a no-mass set containing FFDMs without
masses. The no-mass set was obtained from microcalcifica-
tion cases collected for the development of our microcalcifi-
cation CAD systems. The cases were included as normal,
with respect to masses, only if they were verified to be free
of masses by an experienced Mammography Quality Stan-

dards Act �MQSA� radiologist. Our mass detection system
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aims at application to screening mammography so that the
mass cases, regardless of malignant or benign, are considered
positive. All cases had two mammographic views, the cran-
iocaudal view and the mediolateral oblique view or the lat-
eral �LM or ML� view. The mass set contained 110 cases
with a total of 220 images. The no-mass set contained 90
cases with a total of 180 images. The mass data set was used
to estimate the detection sensitivity and the no-mass data set
was used for estimating the FP rate. There were a total of 110
biopsy-proven masses in the mass data set. Eighty-seven of
the masses were benign and 23 of the masses were malig-
nant. A MQSA radiologist identified the locations of the
masses, measured the mass sizes as the longest dimension
seen on the two-view mammograms, provided descriptors of
the mass shapes and mass margins, and also provided an
estimate of the breast density in terms of BI-RADS category.
Figure 1 shows the information of our data set which in-
cludes the distributions of mass sizes, mass shapes, mass
margins, and breast density.

B. Methods

Our CAD system consists of five processing steps: �1�
preprocessing by using multiscale enhancement, �2� pre-
screening of mass candidates, �3� identification of suspicious
objects, �4� feature extraction and analysis, and �5� FP reduc-
tion by classification of normal tissue structures and masses.
The block diagram for the detection scheme is shown in Fig.
2. These steps are described in more detail in the following.

We randomly separated the mass data set into two inde-
pendent, equal sized subsets. Each subset contained 55 cases
with 110 images. Cross validation was used for training and
testing the algorithms. The training included selecting the
preprocessing Laplacian pyramid reconstruction weights, ad-
justing the filter weights for prescreening and clustering, de-
termining thresholds for rule-based classification, and select-
ing morphological and texture features and classifier
weights. Once the training with one subset was completed,
the parameters and all thresholds were fixed for testing with
the other subset. The training and test subsets were switched
and the training process was repeated. The overall detection
performance was evaluated by combining the performances
for the two test subsets. The trained algorithms with the fixed
parameters were also applied to the no-mass mammograms
to estimate the FP rate in screening mammograms.

1. Preprocessing

FFDMs are generally preprocessed with proprietary meth-
ods by the manufacturer of the FFDM system before being
displayed to readers. The image preprocessing method used
depends on the manufacturer of the FFDM system. To de-
velop a CAD system that is less dependent on the FFDM
manufacturer�s proprietary preprocessing methods, we use
the raw FFDM as input to our CAD system. We developed a
multiscale preprocessing scheme for image enhancement.

Multiscale methods have been used for contrast enhance-
ment of medical images. Since a multiscale method uses the

information from a large number of frequency channels ex-
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tracted from the image adaptively, it is more flexible and
versatile than the commonly used enhancement methods,
such as unsharp masking, which uses a small number of
frequency channels. Two types of multiscale methods have
been used as the preprocessing methods for the contrast en-
hancement of mammograms: the wavelet method and the
Laplacian pyramid method.37 A previous study has shown
that, for the purpose of image enhancement, using a Laplac-

FIG. 2. Schematic diagram of our CAD system for mass detection on
FFDM. The system is developed for screening mammography so that all
masses, regardless of malignant or benign, are considered positive. The FP
classification stage includes rule-based classification, a morphological LDA
classifier, and a texture feature LDA classifier for differentiating masses

from normal breast tissues.
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ian pyramid method is advantageous compared to using the
fast wavelet transformation which introduces visible
artifacts.38 In this project, therefore, we chose the Laplacian
pyramid method as our preprocessing method.

A flowchart of our preprocessing method is shown in Fig.
3. In brief, the mammogram is first segmented automatically
into the background and the breast region. Second, a loga-
rithmic transform is applied to the breast image. The Laplac-
ian pyramid method is used to decompose the breast image

FIG. 1. The information of our mass
data set: �a� distribution of mass sizes,
�b� distribution of mass shapes, �c�
distribution of mass margins, C: cir-
cumscribed, Ind: indistinct, M: mi-
crolobulated, Ob: obscured, Sp: spiqu-
lated, �d� distribution of the breast
density in terms of BI-RADS category
estimated by a MQSA radiologist.

FIG. 3. Schematic diagram for the image preprocessing stage of our mass
detection system, which includes breast boundary segmentation, logarithmic

image transformation, and Laplacian pyramid multiscale enhancement.
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into multiscales. A nonlinear weight function based on the
pixel gray level from each of the low-pass components is
designed to enhance the high-pass components.

Since the contrast between the breast and the background
in a raw FFDM is high, a two-step algorithm was developed
for the segmentation of breast region. First, Otsu’s method39

is used to calculate a threshold and binarize the original im-
age. Second, an eight-connectivity labeling method is used to
identify the connected regions below the threshold on the
binary image. The region with the largest area will be con-
sidered to be the breast region.

Clinical mammograms are usually viewed in a negative
mode of the raw images. In order to process an image with
the same format as the clinical mammograms, we first use an
inverted logarithmic function40 to transform the raw data. A
multiresolution method is then used to enhance the log-
transformed image. The inverted logarithmic function for
signal transfer can be expressed as

Sx = ln�Xmax

X
� �1�

where X is the gray level of the raw data, Xmax is the maxi-
mum of the 14 bit digital gray scale number �i.e., 16 383�.
The transformed image is then linearly scaled to 12 bit pixel
values.

The Laplacian pyramid decomposition is a multiscale
method that was first introduced as an image compression
technique.37 We previously evaluated the effect of Laplacian
pyramid data compression on the detection of microcalcifi-
cations on digitized mammograms.41 An illustration of a La-
placian decomposition tree is shown on the left-hand side of
Fig. 4. The Laplacian pyramid is a sequence of error images
L0 ,L1 , . . . ,Ln. Each is the difference between two consecu-
tive levels of the Gaussian pyramid G0 ,G1 , . . . ,Gn, where G0

is the original image. Each subsequent level of the Gaussian
pyramid in the decomposition tree is generated by convolu-
tion of the image at the previous level with a 5�5 kernel,
w�m ,n�, that has weights of 0.4 at the center, 0.25 at the
eight nearest neighbors of the center, and 0.05 at the 16
peripheral pixels, and then downsampled by a factor of 2, as
described in Eq. �4�. The decomposition of the image from
level k to level k+1 can be expressed mathematically by

Lk = Gk − Expand�Gk+1� , �2�

where

Expand�Gk+1� = 4 �
m=−2

2

�
n=−2

2

w�m,n� · Gk+1� i − m

2
,
j − n

2
� ,

�3�

Gk�i, j� = �
m=−2

2

�
n=−2

2

w�m,n�Gk−1�2i + m,2j + n� . �4�

The original image can be recovered by following the Gauss-
ian reconstruction tree shown on the right-hand side of Fig. 4
if no enhancement is applied to the Laplacian pyramid. At a

given level of the Gaussian reconstruction tree, the image is
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expanded �convolved and upsampled�, as shown in Eq. �3�,
and then added to the Laplacian error image of the corre-
sponding level. Details of the decomposition and reconstruc-
tion processes can be found in the literature.37

We enhance the reconstructed image to facilitate mass
detection. The image at each level of the Laplacian pyramid
that corresponds to a bandpass image is mapped by a non-
linear function. In this study, we use a nonlinear function that
incorporates the information from each bandpass image. A
Gaussian pyramid expansion is then used to reconstruct the
image from the low pass components and the enhanced
bandpass components, as shown in Fig. 4. The reconstruction
scheme is defined by

r�k� = � · Expand�Gk+1� + � · �Expand�Gk+1��p · Lk, �5�

where �, �, and p are constant values in the range of 0.2–2.0
experimentally chosen for each frequency level.

Figures 5�a� and 5�b� show an example of a GE raw im-
age and its processed image provided by the GE FFDM sys-
tem. The histograms of the raw image and the processed
image are shown next to the corresponding images. An ex-
ample of the processed image using our multiresolution en-
hancement method and the corresponding histogram are
shown in Fig. 5�c�.

2. Prescreening and segmentation
of suspicious objects

In our previous CAD system developed for digitized
SFMs, an adaptive density-weighted contrast enhancement

35

FIG. 4. Multiscale enhancement using the Laplacian pyramid decomposition
method: Laplacian decomposition tree on the left-hand side and the Gauss-
ian reconstruction tree on the right-hand side. The different levels of the
Gaussian pyramid images are denoted by Gi, �i=0, . . . ,n�. The error images
at different levels of the Laplacian pyramid are denoted by Li, �i
=0, . . . ,n�. The primed quantities Gi� and Li� denoted the images at different
levels after enhancement. ∑ denotes the summation operation. The image is
downsampled by a factor of 2 when it goes down every level of the decom-
position tree, and upsampled by a factor 2 when it moves up every level of
the reconstruction tree.
�DWCE� filter was developed for prescreening. Although
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the DWCE filter using the gray level information can iden-
tify the suspicious locations of masses on mammograms with
high sensitivity, the prescreening objects often include a
large number of enhanced normal breast structures.

In this study, we investigated the use of a new method that
combines gradient field information and gray level informa-
tion to detect mass candidates on FFDMs. Gradient field in-
formation is commonly used in computer vision or other
fields to extract objects or intensity field distributions. Ko-
batake et al.42 designed a filter, referred to as an iris filter, to
calculate the convergence of gradient index around each
pixel on SFMs which provided shape information for detec-
tion of masses. An extension of the iris filter, referred to as
an adaptive ring filter, was developed by Wei et al.43 for
detection of lung nodules on chest x-ray images. In this
study, we have developed a two-stage gradient field analysis
method which uses not only the shape information of masses
on mammograms but also incorporates the gray level infor-
mation of the local object segmented by a region growing
technique in the second stage to refine the gradient field
analysis.

To reduce noise in the gradient calculation, the image is
smoothed with a 4�4 box filter and subsampled to

FIG. 5. An example of �a� GE raw image, �b� GE processed image, and �c�
our processed image by using the Laplacian pyramid multiscale method.
The gray level histogram of each image is also shown. The GE raw image
has 14 bit gray levels but the histogram only plotted the lower 12 bits be-
cause very few pixels had gray levels higher than 4095.
400 �m�400 �m. The gradient field analysis is applied to
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the smoothed image. At each pixel c�i� within the breast,
concentric annular regions centered at c�i� with an average
radius, R�k�, of k pixels from c�i� and a radial width of
4 pixels are defined within a circular region of about 12 mm
in radius. The gradient vector at each pixel p�j� within an
annular region is computed and the gradient direction is ob-
tained by projecting the gradient vector to the radial direction
vector from c�i� to p�j�. The average gradient direction over
an annular region at the average radius R�k� is calculated as
the mean of the gradient directions over pixels on three ad-
jacent annular regions R�k−1�, R�k�, and R�k+1�. Finally,
the gradient field convergence at c�i� was determined as the
maximum of the average gradient directions among all an-
nular regions. A region of interest �ROI� of 256
�256 pixels in the 100 �m�100 �m images is identified
with its center placed at each location of high gradient con-
vergence. The object in each ROI is segmented by a region
growing method44 in which the location of high gradient
convergence is used as the starting point. After region grow-
ing, all connected pixels constituting the object are labeled.
Finally, the gradient convergence at the center location of the
ROI is recalculated within the segmented object. Objects
whose new gradient convergence is lower than 80% of the
original value are rejected.

After prescreening, the suspicious objects are identified
by using a two-stage segmentation method. First, the
background-corrected ROI was weighted by a Gaussian
function with �=256 pixels. Then, a k-means clustering us-
ing the pixel values in a background-corrected image and a
Sobel filtered image as features is used to find the object.
Figures 6�a� and 6�b� show the initial detection locations and
the grown objects, respectively, obtained by prescreening the
mammogram shown in Fig. 5�c�.

3. Feature extraction and FP reduction

FP classification in our mass detection system is accom-
plished by a three-stage classification scheme.36,44 For each
suspicious object, eleven morphological features are ex-
tracted. Rule-based classification and a linear discriminant
analysis �LDA� classifier using all 11 morphological features
as input predictor variables are trained to remove the de-
tected structures that are substantially different from breast
masses. The training data set alone was used for training the
classification rules and the weights of the LDA classifier.
After morphological classification, global and local multi-
resolution texture analyses45 are performed in each remain-
ing ROI by using the spatial gray level dependence �SGLD�
matrix. Briefly, the wavelet transform is employed to decom-
pose an ROI into three levels for global texture analysis.
Thirteen types of texture features44,46 are extracted from each
ROI. Each feature is calculated at 14 pixel distances and 2
angular directions. A total of 364 features �13 texture
measures�14 distances�2 directions� is extracted from
global texture analysis. Local texture features are extracted
from the local region containing the detected object �object
region� and the peripheral regions within each ROI. A total

of 208 features �104 features from the object region and 104
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features from the peripheral regions� are extracted. The third-
stage FP reduction using the texture features is described
next.

4. Texture classification of masses
and normal tissue

In order to obtain the best texture feature subset and re-
duce the dimensionality of the feature space to design an
effective classifier, feature selection with stepwise LDA was
applied. At each step one feature was entered or removed
from the feature pool by analyzing its effect on the selection
criterion, which was chosen to be the Wilks’ lambda in this
study. The optimization procedure used a threshold Fin for
feature entry, a threshold Fout for feature removal, and a tol-
erance threshold T for excluding features that had high cor-
relation with the features already in the selected pool. Since
the appropriate values of Fin, Fout, and T were unknown, we
examined a range of Fin, Fout, and T values using an auto-
mated simplex optimization method. For a given combina-
tion of Fin, Fout, and T values, the algorithm used a leave-
one-case-out resampling method within the training subset to
select features and estimate the weights for the LDA classi-
fier. To evaluate the classifier performance, the test discrimi-

FIG. 6. An example demonstrating the processing steps with our CAD sys-
tem: �a� object locations identified in prescreening, �b� identified suspicious
objects, �c� detected objects after FP reduction, and �d� image superimposed
with ROIs identifying the detected objects. The true mass is indicated by an
arrow.
nant scores from the left-out cases were analyzed using re-
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ceiver operating characteristic �ROC� methodology.47 The
discriminant scores of the mass and normal tissue were used
as the decision variable in the LABROC program, which fits a
binormal ROC curve based on maximum likelihood estima-
tion. The accuracy for classification of mass and normal tis-
sue was evaluated as the area under the ROC curve, Az. The
test Az for the left-out cases in the leave-one-out resampling
within the training subset was used as a figure of merit to
guide the simplex algorithm to search for the best set of Fin,
Fout, and T values within the parameter space. In this ap-
proach, feature selection was performed without the left-out
case so that the test performance would be less optimistically
biased.48 However, the selected feature set in each leave-one-
case-out cycle could be slightly different because every cycle
had one training case different from the other cycles. In order
to obtain a single trained classifier to apply to the test subset,
a final stepwise feature selection was performed with the
entire training subset and a set of Fin, Fout, and T thresholds
chosen from the output of simplex training process. This set
of Fin, Fout, and T thresholds was chosen based not only on
the test Az values, which were generated when the simplex
procedure was searching through the parameter space, but
also on the average number of features selected. The appro-
priate thresholds were chosen as a balance between keeping
the number of selected features small and a relatively high
classification accuracy by LDA. The chosen thresholds were
then applied to the entire training subset to obtain the final
set of features using stepwise feature selection and estimate
the weights of the LDA. The LDA classifier with the selected
feature set was then fixed and applied to the test subset. The
test subset was independent of the training subset as de-
scribed in Sec. II B 2 and was not used in the above-
described leave-one-case-out classifier training process.

5. Evaluation methods

The detected individual objects were compared with the
“truth” ROI marked by an experienced radiologist. A de-
tected object was scored as true positive �TP� if the overlap
between the bounding box of the detected object and the
truth ROI was over 25%. Otherwise, it would be scored as
FP. The 25% threshold was selected as described in our pre-
vious study.36 The detection performance of the CAD system
was assessed by free response ROC �FROC� analysis. FROC
curves were presented on a per-mammogram and a per-case
basis. For mammogram-based FROC analysis, the mass on
each mammogram was considered an independent true ob-
ject; the sensitivity was thus calculated relative to 220
masses. For case-based FROC analysis, the same mass im-
aged on the two-view mammograms was considered to be
one true object and detection of either or both masses on the
two views was considered to be a TP detection; the sensitiv-
ity was thus calculated relative to 110 masses. Figure 6�c�
shows an example of the final detected objects and Fig. 6�d�
shows the locations of these objects superimposed on the
mammogram.

To evaluate the effect of the preprocessing methods on

mass detection, we also trained a CAD system using the GE
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processed image as input. This CAD system used the same
methods as those described earlier for the raw images except
that the Laplacian pyramid preprocessing step was not ap-
plied to the GE processed image, and that the prescreening
and feature classifiers were retrained specifically for the GE
processed images to obtain the best performance. The train-
ing and test subsets contained the same corresponding cases
as for the raw image subsets. The training and testing were
performed using the above-described cross validation
method. The performance of the CAD system using the GE
processed images was quantified by the average test FROC
curve and compared with that using the raw images.

III. RESULTS

With raw images as input and Laplacian pyramid en-
hancement, our CAD system using the two-stage gradient
field analysis detected 92.7% �204/220� of the masses with
an average of 18.9 �4152/220� objects/image at the pre-
screening stage, compared with an average of 23.8 objects/
image at the same sensitivity by using gradient field infor-
mation alone. After FP reduction using the rule-based and
linear classifier based on morphological features, there were
a total of 3412 mass candidates �15.5 objects/image� at a
sensitivity of 90.5% �199/220�.

The texture-based LDA classifier for FP reduction was
designed with stepwise feature selection and simplex optimi-
zation. The most effective subset of features from the avail-
able feature pool was selected for each of the training subsets
during the training procedure. Twenty �11 global and 9 local�
and 19 �12 global and 7 local� texture features were selected
from the two independent training subsets, respectively. The
test ROC curves are shown in Fig. 7. The training Az values
of the LDA classifier on the two training subsets were
0.87±0.02 and 0.88±0.01, respectively. The classifiers
achieved Az values of 0.89±0.02 and 0.85±0.02 on the in-
dependent test subsets, respectively. Figure 8 shows the
FROC curves for the two test subsets after FP reduction with
the corresponding trained LDA classifiers. An average FROC

FIG. 7. The test ROC curves from the two independent mass subsets. The
LDA classifiers using text features achieved an Az value of 0.89±0.02 for
test subset 1 and 0.85±0.02 for test subset 2 in the classification of mass and
normal breast tissues.
curve was derived from these two FROC curves by averag-
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ing the FP/images at the corresponding sensitivities. This
average test FROC curve is plotted in Fig. 9 for comparison
with the other FROC curves, described next.

In addition to using the mass data set containing 110 cases
for the cross validation training and testing, we used a no-
mass data set containing 90 cases with 180 images to evalu-
ate the FP detection rate in normal cases. Since two sets of
trained parameters were acquired as a result of the cross
validation training, we applied the two trained CAD systems
separately to the no-mass data set for FP detection. The num-
ber of FP marks produced by the algorithm was determined
by counting the detected objects on these normal cases only.
The mass detection sensitivity was determined by counting
only the abnormal objects on each of the test mass subsets.
The combination of the sensitivity from each of the test mass
subsets and the FP rate from the normal data set at the cor-
responding detection thresholds resulted in a test FROC
curve. The two test FROC curves were then averaged, as
described earlier, to obtain an overall FROC curve quantify-
ing the test performance of the CAD system. Figures 9�a�
and 9�b� show the comparison of the average FROC curves
with the FP rates estimated from the two data sets. The test
FROC curve with the FP rate estimated from the no-mass

FIG. 8. The test FROC curves from the two independent mass subsets for
the CAD system using the raw images as input and processed with the
Laplacian pyramid method. The FP rate was estimated from the mammo-
grams with masses. �a� Image-based FROC curves, �b� case-based FROC
curves.
data set showed a case-based detection sensitivity of 70%,
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80%, and 90% at 0.85, 1.31, and 2.14 FP marks/image,
which are slightly higher than the FP rates of 0.7, 1.1, and
1.8 marks/image, respectively, estimated from the mass data
set. Since our mass detection algorithm limits the maximum
number of output marks to be 3 at the final stage, the FP
marker rates will be slightly higher if the detection is per-
formed in no-mass images. However, many images do not
reach the maximum of 3 marks so that the difference in the
FP marker rate between the mass and no-mass set is less than
one. We also analyzed the detection accuracy of the system
for malignant and benign masses separately. Figures 10�a�
and 10�b� show the average FROC curves for detection of
malignant and benign masses.

The average test FROC curves of the CAD system using
the GE processed images as input were compared to those of
the CAD system using raw images as input and Laplacian
pyramid multiscale preprocessing as shown in Fig. 9. The
FROC curves were plotted as the detection sensitivity as a
function of the number of FP marks per image on the mass
data set. The CAD system using the GE processed images as

FIG. 9. Comparison of the average test FROC curves obtained from: �1� the
CAD system using raw images as input, with the FP rate estimated from the
mammograms with masses, �2� the CAD system using raw images as input,
with the FP rate estimated from the normal mammograms without masses,
and �3� the CAD system using GE processed images as input, with the FP
rate estimated from the GE processed mammograms with masses. �a�
Image-based FROC curves, �b� case-based FROC curves.
input achieved a case-based sensitivity of 70%, 80%, and
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90% at 0.9, 1.6, and 3.1 FP marks/image, respectively, com-
pared with 0.7, 1.1, and 1.8 FP marks/image on the CAD
system using raw images as input.

IV. DISCUSSION

Several FFDM systems have been approved for clinical
applications. It is important to develop a CAD system that
can easily be adapted to images acquired by FFDM systems
from different manufacturers. In this study, we are develop-
ing a CAD system that uses the raw FFDMs as the input.
Since digital detectors generally have a linear response to
x-ray exposure, the raw pixel values are a linear function of
the absorbed x-ray energy in the detector. The signal range
between different digital detectors can therefore be normal-
ized linearly with respect to each other. Although the spatial
resolution and noise properties of the images from different
detectors are still different, the use of raw images already
reduces one of the major differences between mammograms
from different FFDM systems. For preprocessing of the raw
images, we developed a multiresolution enhancement
method. An example of a typical mammogram processed by
the GE method and our method is compared in Fig. 5. As
seen from this example, the enhancement of mammographic

FIG. 10. Comparison of the average test FROC curves for the malignant and
benign mass sets. The CAD system using raw images as input was used and
the FP rate was estimated from the mammograms without masses. �a�
Image-based FROC curves, �b� case-based FROC curves.
structures was stronger for our processed image than for the
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GE processed image. From a comparison of their histograms,
it was found that the two histograms are very similar except
for the average gray level.

For the evaluation of the effect of the preprocessing meth-
ods on computerized mass detection, we observed that our
Laplacian pyramid preprocessing method provided higher
detection accuracy than the GE processing method. As
shown in Fig. 5, the Laplacian pyramid preprocessing
method applies a stronger edge enhancement to the image
than the GE method. Our preprocessing method aims at en-
hancing the image structures for computer vision whereas
the GE processing method was designed to enhance the im-
age for human visual interpretation. The stronger enhance-
ment used for preprocessing the raw images appeared to im-
prove the accuracy of the computer in detecting the masses.

Currently, there is no established statistical analysis
method for testing the significance of the difference between
two FROC curves generated by a CAD system. Chakraborty
et al. proposed using an alternative free-response ROC
�AFROC� method49 to transform the FROC data to AFROC
data, to which the curve fitting software and statistical sig-
nificance tests for ROC analysis can then be applied and
demonstrated its application to human observer performance
rating data. In the AFROC method, false-positive images
�FPIs� instead of FPs per image are counted. The confidence
rating of a FPI is determined by the highest confidence FP
decision on the image regardless of how many lower confi-
dence FP decisions are made on the same image. We applied
the AFROC method to evaluate the differences in pairs of
our FROC curves that used the no-mass set for estimation of
the FP rates. The ROCKIT software developed by Metz et al.47

was used to analyze the AFROC data. The comparison of A1

and p values is summarized in Table I. The area under the
fitted AFROC curve �A1� was 0.44 and 0.39, respectively, on
mass test subsets 1 and 2 for the CAD system using raw
images as input and processed with our Laplacian pyramid
method, and 0.37 and 0.31, respectively, on the same subsets
for the CAD system using GE processed images as input.
The difference between the fitted AFROC curve for our pro-
cessed images and that for the GE processed images was
statistically significant �p�0.05� for both test subsets. How-
ever, all four fitted AFROC curves deviated systematically
from the AFROC data �see two examples plotted in Fig. 11

TABLE I. Estimation of the statistical significance in th
system using the FFDM raw images as input and pro
CAD system using GE processed images as input.
no-mass data set �Fig. 9� were compared.

A1 �AFROC

Test
subset 1

Test
subset 2

Raw+LP processed 0.44 0.39
GE processed 0.37 0.31
for the test subset 1�. It is uncertain whether the AFROC

Medical Physics, Vol. 32, No. 9, September 2005
method is applicable to our FROC data and thus whether the
statistical significance testing is valid.

More recently, Chakraborty et al.50 proposed a JAFROC
method and provided software to estimate the statistical sig-
nificance of the difference between two FROC curves. We
also applied the JAFROC analysis to the two pairs of FROC
curves. The figure-of-merit �FOM� from the output of the
JAFROC software was 0.46 and 0.41, respectively, on mass
test subsets 1 and 2 for the CAD system using raw images as
input and processed with our Laplacian pyramid method, and
0.39 and 0.34, respectively, on the same subsets for the CAD
system using GE processed images as input. The difference
between the FOM for our processed images and that for the
GE processed images was again statistically significant �p
�0.05�. The FOM values were about 0.02 higher than the
corresponding A1 values. The JAFROC software did not pro-
vide a fitted curve or a goodness-of-fit indicator in the output
so that it is not known whether this model fits our FROC
data better than the AFRPC method. Although both methods
indicate that the improvement in the FROC performance us-
ing our Laplacian pyramid processed images is statistically

ference between the FROC performance of the CAD
with our Laplacian pyramid method and that of the

FROC curves with the FP rates obtained from the

FOM �JAFROC�

p
values

Test
subset 1

Test
subset 2

p
values

0.012 0.46 0.41 0.006
0.0009 0.39 0.34 0.012

FIG. 11. Comparison of alternative free-response receiver operating charac-
teristic �AFROC� curves. The raw curves were transformed from the FROC
curves of mass detection on test subset 1 using either the raw images as
input and processed with the Laplacian pyramid method �LP� or the GE
processed images as input. The FP rate was estimated from the mammo-
grams without masses. The fitted AFROC curves were obtained by applying
e dif
cessed
The

�

the ROCKIT program to the transformed AFROC data.
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significant, further investigations are needed to study
whether these models are valid for analyzing the FROC per-
formance of CAD systems.

The prescreening technique is an important task in a CAD
system. A number of researchers have developed methods for
detection of suspicious masses on SFMs and CRs. The pre-
vious methods produced between 10 to 30 FPs/image for a
mass detection sensitivity of approximately 90%. However,
it is difficult to compare the effectiveness of the different
methods because of the differences in the image recording
systems and in the data sets. In this study, we developed a
new method that combines gradient field information, which
was originally developed for the detection of lung nodules on
chest x-ray images,43 and gray level information44 for pre-
screening mass candidates on the FFDMs. The new method
produced 18.9 objects/image at 93% sensitivity in the pre-
screening step, compared with an average of 23.8 objects/
image at the same sensitivity by using gradient field infor-
mation alone.

The texture features in this study were extracted by using
the SGLD matrix. A total of 572 features were included in
our initial feature pool. These features were also used by our
CAD system previously developed for SFMs. An average
number of 19.5 features were selected by using a stepwise
feature selection method. The Az values for the LDA classi-
fiers were 0.87±0.02 and 0.88±0.01 on the two training sub-
sets, and 0.89±0.02 and 0.85±0.02 on the test subsets, re-
spectively. The slightly higher test Az from the first test
subset than the Az from its training subset may indicate that
some relatively easy cases were assigned, by chance, to that
test set during random partitioning. We also investigated if
other features could improve the performance of our CAD
system. The different feature spaces that we examined in-
cluded features extracted from principal component analysis
applied to the ROI image, run length statistics texture fea-
tures extracted from the ROI images, and combination of one
or both of these feature spaces with the SGLD feature space.
However, the test results showed that a LDA classifier de-
signed in the SGLD feature space alone provided the best
performance. Although this was found to be true for both our
CAD mass detection system for SFMs developed previously
and the current system for FFDMs, it is still difficult to con-
clude that the SGLD features are the best feature set for
classification between breast masses and normal tissues. One
major concern of the SGLD feature space is that the depen-
dence of the feature values on the pixel pair distance and
angular direction leads to a feature pool with a large number
of features. Some features in such a large feature space may
provide good performance in classification of masses and
normal structures by chance. We attempted to alleviate this
problem by using an independent test set to evaluate the
classifier performance. However, since we chose the overall
system parameters with the knowledge of the performance
for the test sets, the evaluation would still amount to valida-
tion rather than true testing. We have verified that our CAD
system for SFMs can achieve reasonable performance in a

36
true independent data set and a prospective pilot clinical
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trial.16 The performance of the current CAD system for
FFDMs will have to be evaluated similarly when indepen-
dent data sets become available.

The detection performance of a CAD system for malig-
nant masses is more important than its performance for all
masses. Figures 10�a� and 10�b� indicate that the sensitivity
of the system is higher for malignant masses than for benign
masses. This is consistent with our observation in previous
studies of our CAD system for digitized SFMs.36 However,
since our current data set contained only 23 malignant cases,
there will be large statistical uncertainty in the evaluation of
sensitivity in this subset. A larger data set is being collected
for comparing the detection performances of the CAD sys-
tem between malignant and benign masses and also for the
purpose of classifying malignant and benign masses. Further-
more, CAD algorithms developed for SFMs have been
proven to be useful as a second opinion to assist radiologists
in mammographic interpretation. Because of the higher SNR
and linear response of digital detectors, there is also a poten-
tial that FFDMs can improve the sensitivity of breast cancer
detection, especially in dense breasts. Several studies have
been or are being conducted to compare FFDM with SFM in
screening cohorts. It is also important to compare the perfor-
mance of CAD systems between FFDMs and SFMs. A study
is under way to compare the performance of the two systems
on pairs of FFDM and SFM obtained from the same
patients.51

V. CONCLUSION

Several FFDM systems have been approved for clinical
applications. It is important to develop CAD systems for
breast cancer detection in FFDM. In this work, we developed
a CAD system that uses the raw FFDMs as the input. A
multiresolution Laplacian pyramid enhancement method was
devised to preprocess the raw FFDMs. A new prescreening
method that combined gradient field analysis with gray level
information was developed to identify mass candidates.
Rule-based and LDA classifiers in a feature space which con-
sisted of morphological features and SGLD texture features
were designed to differentiate masses from normal tissues. It
was found that our CAD system achieved a case-based sen-
sitivity of 70%, 80%, and 90% with an estimate of 0.85,
1.31, and 2.14 FP marks/image, respectively, on normal
cases. The results indicate that our mass detection CAD
scheme can be useful for detecting masses on FFDMs. Stud-
ies are under way to further optimize the processing param-
eters, the feature extraction, and the classifiers for FP reduc-
tion. Comparison of mass detection performance of our CAD
system for FFDMs and that for SFMs is also in progress.
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In this study, our purpose was to improve the performance of our mass detection system by using
a new dual system approach which combines a computer-added detection �CAD� system optimized
with “average” masses with another CAD system optimized with “subtle” masses. The two single
CAD systems have similar image processing steps, which include prescreening, object segmenta-
tion, morphological and texture feature extraction, and false positive �FP� reduction by rule-based
and linear discriminant analysis �LDA� classifiers. A feed-forward backpropagation artificial neural
network was trained to merge the scores from the LDA classifiers in the two single CAD systems
and differentiate true masses from normal tissue. For an unknown test mammogram, the two single
CAD systems are applied to the image in parallel to detect suspicious objects. A total of three data
sets were used for training and testing the systems. The first data set of 230 current mammograms,
referred to as the average mass set, was collected from 115 patients. We also collected 264 mam-
mograms, referred to as the subtle mass set, which were one to two years prior to the current exam
from these patients. Both the average and the subtle mass sets were partitioned into two indepen-
dent data sets in a cross validation training and testing scheme. A third data set containing 65 cases
with 260 normal mammograms was used to estimate the FP marker rates during testing. When the
single CAD system trained on the average mass set was applied to the test set with average masses,
the FP marker rates were 2.2, 1.8, and 1.5 per image at the case-based sensitivities of 90%, 85%,
and 80%, respectively. With the dual CAD system, the FP marker rates were reduced to 1.2, 0.9,
and 0.7 per image, respectively, at the same case-based sensitivities. Statistically significant �p
�0.05� improvements on the free response receiver operating characteristic curves were observed
when the dual system and the single system were compared using the test sets with either average
masses or subtle masses. © 2006 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2357838�
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I. INTRODUCTION

Breast cancer is one of the leading causes of cancer mortality
among women.1 It has been reported that early diagnosis and
treatment can significantly improve the chance of survival
for patients with breast cancer.2–4 At present, the most suc-
cessful method for the early detection of breast cancer is
screening mammography.5 Various methods are being devel-
oped to improve the accuracy of breast cancer detection.
Double reading by radiologists can reduce the miss rate of
radiographic reading. However, double reading will increase
the cost of mammographic screening. An alternative method
is to use a trained computer-aided detection �CAD� system as
a second reader.6,7 Recent clinical studies have shown that
CAD systems are helpful for increasing radiologists’ accu-
racy in detecting breast cancers.8–13

A large volume of literature has been published in the
CAD area. CAD systems for mammography generally con-
sist of two subsystems: one is a mass detection system and
the other is a microcalcification detection system. Detection

of masses on mammograms is often more challenging than
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detection of microcalcifications. The mass detection systems
to-date have employed a single-system approach using vari-
ous techniques for prescreening of mass candidates and clas-
sification of true and false positives.14–24 Our laboratory in-
corporated two-view mammographic information for
improved differentiation of true masses and false positives
and obtained promising preliminary results.22 However, de-
velopment of new methods to improve the performance of
mass detection systems remains an important area of CAD
research.

The CAD systems developed so far have mostly used
masses seen on current mammograms �i.e., the mammo-
grams on which the masses were detected by radiologists�
for training. An important purpose of a CAD system is that it
is used as a second reader to alert radiologists to subtle can-
cers that may be overlooked. To study the ability of a CAD
system in detecting subtle cancers that are likely to be
missed by radiologists, one way is to evaluate its accuracy in
detecting missed cancers on prior mammograms �i.e., the
mammograms in previous examinations on which the mass

or cancer can be seen retrospectively but was considered

415711…/4157/12/$23.00 © 2006 Am. Assoc. Phys. Med.
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negative or benign at the time of the examination�. Some
researchers have investigated the performance change of
CAD systems when using prior mammograms as input. In
our study of mass detection on prior mammograms,25 we
obtained a case-based sensitivity of 74% �20/27� of the ma-
lignant masses with 2.2 false positives �FPs� per image. te
Brake et al.26 reported that their CAD system has a case-
based sensitivity of 34% �22/65� of the cancers which have
the appearance of masses or stellate lesions in the prior ex-
aminations with 1 FP per image. A commercial system �R2
ImageChecker� also reported detection of 42% �72/172� of
the cancers in the prior years which were considered worthy
of call-back in retrospect by expert mammographers with
about 2 FP marks/case.27 Zheng et al.23 reported that their
CAD system trained with current mammograms could not
perform optimally in prior mammograms and vice versa;
whereas the same system trained with prior mammograms
can perform better on detecting the masses on prior mammo-
grams. Recently, an assessment study28 was conducted to
compare the performance of two commercial systems and
one research CAD system on current mammograms and
prior mammograms. The results showed that the true positive
�TP� fraction for CAD systems on prior mammograms of 39
breasts with malignant masses ranged from 15% to 26% with
0.28 to 0.41 FP marks/image. Although the detection perfor-
mance reported in the different studies vary, probably due to
the differences in the data set used, these studies indicate that
the sensitivities of current CAD systems in detecting subtle
masses on prior mammograms are substantially lower than
that obtained from detection on current mammograms. The
difficulty in recognizing the subtle and possibly different fea-
tures of the masses on priors compared to those of the
masses on current mammograms may be one of the factors
that causes oversight for both radiologists and the CAD sys-
tems.

The goal of pattern recognition is to achieve the best pos-
sible classification performance in the task at hand. Re-
searchers had shown that, for a class of objects with a wide
range of characteristics, the classification performance can be
improved by using combination of classifiers whereby ob-
jects of certain characteristics are classified by one classifier
using a set of features and objects of different characteristics
by another classification scheme based on different
features.29–35 The advantage of using combination of classi-
fiers is that it may stabilize the training of classifiers even
with a relatively small sample size because each classifier
does not have to accommodate a wide range of characteris-
tics and features.36,37 These observations motivated our inter-
est in the design of a dual CAD system for mass detection.

Since the missed cancers on prior mammograms represent
the difficult cases that are more likely to be missed by radi-
ologists if similar cancers occur on screening mammograms,
it is important to improve the sensitivity of the CAD system
in detecting these cancers. On the other hand, when a CAD
system is applied to a new mammogram in clinical practice,
it has to detect breast lesions of all degrees of subtlety effec-

tively. However, it is difficult to train a single CAD system to
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provide optimal detection for all lesions over the entire spec-
trum of subtlety because the classifiers have to make com-
promises to accommodate cancers of a wide range of char-
acteristics. Therefore, we have been exploring a new dual
CAD system approach that combines a CAD system trained
with retrospectively seen masses on prior mammograms with
a CAD system trained with masses detected on current
mammograms.38,39 In this paper, we will describe the design
of the dual CAD system and report our current results.

II. MATERIALS AND METHOD

A. Data sets

All mammograms in this study were collected from pa-
tient files in the Department of Radiology at the University
of Michigan with Institutional Review Board �IRB� ap-
proval. The mammograms were digitized with a LUMISYS
85 laser film scanner with a pixel size of 50 �m�50 �m
and 4096 gray levels. The scanner was calibrated to have a
linear relationship between gray levels and optical densities
�O.D.� from 0.1 to greater than 3 O.D. units. The nominal
O.D. range of the scanner is 0–4. The full resolution mam-
mograms were first smoothed with a 2�2 box filter and
subsampled by a factor of 2, resulting in 100 �m
�100 �m images. The images at a pixel size of 100 �m
�100 �m were used for the input of our CAD system.

We collected three data sets. The first data set contained
115 cases with confirmed masses. Each case included the
current mammograms that prompted the radiologist to work
up the mass. This is referred to as the “average” mass set. All
of the cases in the average mass set had two mammographic
views: the craniocaudal view and the mediolateral oblique
view or the lateral view, thus yielding a total of 230 mam-
mograms. There were 115 masses �67 malignant masses and
48 benign masses� in this data set, of which 105 were
biopsy-proven and 10 were determined to be benign by long-
term follow-up.

The second data set was composed of the prior mammo-
grams dated one to two years earlier than the mammograms
of the same patients in the average mass set. Since the
masses on prior mammograms are on average subtler than
those on current mammograms, this data set is referred to as
the “subtle” mass set. On 5 of the 115 patients, no mass or
focal density could be identified on either view of the prior
mammograms. Therefore, the subtle mass set was composed
of 110 cases �62 malignant and 48 benign�. For the purpose
of training the subtle mass detection system, the subtle
masses do not have to be obtained from the same cases as the
average mass set but we used the available prior mammo-
grams for these mass cases in our database. Nineteen of the
110 cases had two prior mammogram examinations. Of the
129 examinations in the subtle mass set, 123 had two mam-
mographic views and 6 had three views, with a total of 264
mammograms. Many of the subtle masses on the prior mam-
mograms could be identified only as a focal density corre-
sponding to the location of the subsequently detected mass

on the current mammograms. On 44 of the two-view prior
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mammograms, the mass location was evident only on one
view. Table I summarizes the information for the average and
subtle mass subsets.

The third data set was composed of 260 normal bilateral
two-view mammograms obtained from 65 patients. No
masses were evident on these mammograms upon review by
the experienced radiologist.

The two mass data sets were used to estimate the detec-
tion sensitivity and the normal data set was used for estimat-
ing the FP marker rate. For the mass data sets, the true loca-
tions of the masses were identified by an experienced MQSA
radiologist using all available imaging and clinical informa-
tion. The radiologist also provided an estimate of the longest
diameter of the mass, descriptors of its margin and shape, a
visibility rating, and an estimate of the breast density in
terms of BI-RADS category. Figure 1 shows the distributions
of mass sizes, mass shapes, mass margins, and their visibility
on a 10-point rating scale with 1 representing the most vis-
ible masses and 10 the most difficult case relative to the
cases seen in their clinical practice. The masses had a mean
of 13.7 mm and a median of 12 mm in the average data set
and a mean of 9.7 mm and a median of 10 mm in the subtle
data set. Figure 2 shows the breast density for both the nor-
mal data set and the mass data sets. As can be seen from the
distributions of the mass characteristics, the average masses
on the current mammograms and the subtle masses on the
priors had large overlap. Nevertheless, on average, the subtle
masses were smaller in size and less conspicuous on the

TABLE I. Description of cases in the average and subtle mass data sets and
the subsets for training and testing in the cross-validation scheme.

Mass subset 1 Mass subset 2

Average
mass subset

Subtle
mass subset

Average
mass subset

Subtle
mass subset

Total No. of cases 57 54 58 56
Cases with two

prior examinations
NA 10 NA 9

Exams with two
views

57 58 58 65

Exams with three
views

0 6 0 0

Total No.
of images

114 134 116 130

No. of negative
images

0 25 0 19

No. of mass images
for training

114 109 116 111

No. of two-view
pairs for testing

57 64 58 65

No. of images for
testing

114 128 116 130

No. of malignant
masses

36 33 31 29

No. of benign
masses

21 21 27 27
mammograms.
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B. Methods

In order to improve the sensitivity of detecting breast le-
sions of all degrees of subtlety, we developed a new dual
system approach which combines a system trained with av-
erage masses with another system trained with subtle masses.
When the trained dual system is applied to an unknown
mammogram, the two CAD systems are used in parallel to
detect suspicious objects on a single mammogram. No prior
mammogram is needed. The additional FPs from the use of
the two systems are reduced by an information fusion stage.
We will refer to the two systems separately trained with the
average masses and the subtle masses as “single” CAD sys-
tems in the following discussions.

We randomly separated the mass data sets by case into
two independent subsets. Both the average and subtle mass
subsets followed the same case grouping so that mammo-
grams from the same case would not be separated into the
training subset for one single CAD system and the test subset
for the other single CAD system in a cross-validation cycle.
Table I shows the subsets of cases in the average and subtle
mass data sets. Two-fold cross validation was used for train-
ing and testing the algorithms. The training included select-
ing proper parameters for each single CAD system and for
information fusion. Once the training with one mass subset
was completed, the parameters were fixed for testing with the
other mass subset. The training and test mass subsets were
switched and the training and test processes were repeated.
The CAD systems were trained with single mammograms.
To maximize the number of training images with masses, all
images with a visible mass were included regardless of
whether they were a part of a two-view or three-view case
when the subtle mass subset was used as a training set. How-
ever, when the subtle mass subset was used as a test set, only
two views were included for each case because we used two-
view mammograms to derive the case-based test perfor-
mance. For cases containing three views, we therefore in-
cluded only two of the views in testing. We also included
cases with the mass visible on only one of the two views.
After the two-fold cross validation testing, the overall detec-
tion performance was evaluated by combining the perfor-
mances of the two test subsets. The trained algorithms with
the fixed parameters were also applied to the normal set of
mammograms, which was not used during training, to esti-
mate the FP rate in screening mammograms.

1. Single CAD system overview

The major steps in the two single mass detection systems
are similar but the feature spaces and classifiers for FP re-
duction in each system were designed separately to suit the
characteristics of average and subtle masses, respectively.
The two systems are therefore described together in the fol-
lowing but the differences will be pointed out whenever ap-
plicable. Each single CAD system consists of four process-
ing steps: �1� prescreening of mass candidates, �2�

segmentation of suspicious objects, �3� feature extraction and
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analysis, and �4� FP reduction by classification of normal
tissue structures and masses. The block diagram for the de-
tection scheme is shown in Fig. 3.

For the prescreening stage, we have developed a two-
stage gradient field analysis method which not only uses the
shape information of masses on mammograms but also in-
corporates the gray level information of the local object seg-

FIG. 1. The characteristics of the masses in our mass data set: �a� distributio
1 representing the most visible masses and 10 the most subtle masses rel
distribution of mass margins, C: circumscribed, Ind: indistinct, M: microlob

FIG. 2. The distribution of breast density in terms of BI-RADS categories

estimated by an MQSA radiologist.
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mented by a region growing technique in the second stage to
refine the gradient field analysis.24,40 Locations of high radial
gradient convergence are labeled as mass candidates. After
prescreening, the suspicious objects are identified by using a
two-stage segmentation method.41 First, the background-

ass sizes, �b� distribution of mass visibility on a 10-point rating scale with
to the cases seen in clinical practice, �c� distribution of mass shapes, �d�
d, Ob: obscured, Sp: spiculated.

FIG. 3. Schematic diagram of our single CAD system for mass detection.
The FP classification stage includes rule-based classification, a morphologi-
cal LDA classifier, and a texture feature LDA classifier for differentiating
n of m
ative
masses from normal breast tissues.
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corrected ROI is weighted by a two-dimensional Gaussian
function with �=256 pixels to enhance the central region.
Sobel filtering is then applied to the Gaussian-weighted ROI
to generate another enhanced image. Second, a k-means clus-
tering using the pixel values from these two images as fea-
tures is used to segment the object. For each suspicious ob-
ject, eleven morphological features21 were extracted. Rule-
based and linear discriminant classifiers were trained by
using the training data set only to remove the detected struc-
tures that were substantially different from breast masses.
For the system trained with average masses, global and local
multiresolution texture analysis42 were performed in each
ROI by using the spatial gray level dependence �SGLD� ma-
trices. A total of 364 features were extracted from global
texture analysis. Local texture features were extracted from
the local region containing the detected object and the pe-
ripheral regions within each ROI. A total of 208 features
were extracted for local texture analysis. For the system
trained with subtle masses, instead of the SGLD texture fea-
tures, gray level features and run length statistics analysis
�RLS� texture features43 were extracted inside and outside of
each mass region on the original image and gradient field
image. The gray level features included the contrast of the
object relative to the surrounding background, the minimum
and the maximum gray levels, and the characteristics derived
from the gray level histogram in the regions inside and out-
side of each object including skewness, kurtosis, energy, and
entropy. Five RLS texture features were extracted in both the
horizontal and vertical directions: short runs emphasis, long
runs emphasis, gray level nonuniformity, run length nonuni-
formity, and run percentage. A total of 66 features were ex-
tracted for the system trained with subtle masses.

In order to obtain the best texture feature subset and also
reduce the dimensionality of the feature space to design an
effective classifier, stepwise feature selection with linear dis-
criminant analysis �LDA� was applied to the training subset.
The detailed procedure has been described elsewhere.24,44,45

Briefly, at each step one feature was entered or removed
from the feature pool by analyzing its effect on the selection
criterion, which was chosen to be the Wilks’ lambda in this
study. Since the appropriate values of thresholds for feature
entry, feature elimination, and tolerance of correlation for
feature selection were unknown, we used an automated sim-
plex optimization method to search for the best combination
of thresholds in the parameter space. The simplex algorithm
used a leave-one-case-out resampling method within the
training subset to select features and estimate the weights for
the LDA classifier. To have a figure-of-merit to guide feature
selection, the test discriminant scores from the left-out cases
were analyzed using receiver operating characteristic �ROC�
methodology.46 The accuracy for classification of masses and
FPs was evaluated as the area under the ROC curve, Az. In
this approach, feature selection was performed without the
left-out case so that the test performance would be less op-
timistically biased.47 However, the selected feature set in
each leave-one-case-out cycle could be slightly different be-
cause every cycle had one training case different from the

other cycles. In order to obtain a single trained classifier to
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apply to the independent test subset, a final stepwise feature
selection was performed with the best combination of thresh-
olds, found in the simplex optimization procedure, on the
entire training subset to obtain the final set of features and
estimate the weights of the LDA. Note that the entire process
of feature selection and classifier weight estimation was per-
formed within the training subset. The LDA classifier with
the selected feature set was then fixed and applied to the
independent test subset. The training and testing processes
were performed independently for the two-fold cross-
validation sets.

2. Training and test for dual system

The block diagram for the dual system is shown in Fig. 4.
During the training of the dual system, we used the current
and prior mammograms from the same patients. The current
mammograms that contained the average masses were only
used to train the first single CAD system. The prior mammo-
grams that contained the subtle masses were only used to
train the second single CAD system. The prescreening and
the segmentation steps in the two systems are identical.
Since the morphological appearances of average and subtle
masses are different, the rules in the morphological rule-
based FP classification are trained differently for the two
single CAD systems. During testing with an independent
mammogram, the dual system keeps all the suspicious ob-
jects that satisfy the FP classification rules of either single
CAD system and applies the LDA classifiers from both
single systems to each object. Each object thus has two LDA
scores.

To merge the information from the two CAD systems, a
fusion scheme was developed for our dual system. In this
study, a feed-forward backpropagation artificial neural net-
work �BP-ANN� was trained to classify the masses from nor-
mal tissues by combining the output information from the
two single CAD systems. The LDA classifiers from the two
single CAD systems were applied to each detected object.
The two LDA discriminant scores for each object were used
as input to the BP-ANN. The BP-ANN had an input layer
with two nodes, a hidden layer with N nodes, and an output
layer with one node. The nodes were interconnected by
weights and information propagated from one layer to the
next through a log-sigmoidal activation function. The learn-
ing of the ANN was a supervised process in which known

FIG. 4. Schematic diagram of proposed dual CAD system for mass detec-
tion. BP-ANN is used for information fusion.
training cases were input to the ANN. The performance func-
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tion for the network was the mean-squared error between the
network outputs and the target outputs. The weights of the
network were adjusted iteratively by a feedforward back-
propagation procedure to minimize the error. Detailed de-
scription of the backpropagation neural network can be
found in the literature.48,49

To choose the number of hidden nodes �N� in the BP-
ANN, we used a three-fold cross-validation method within
the training subset. We randomly separated the entire training
subset including all detected objects into three independent
groups. The objects belonging to the same case were sepa-
rated into the same group. For a given N, three training
cycles were performed, in each of which two of the three
groups were used to train the BP-ANN and the left-out group
was used to test its performance. The Az value obtained from
the ANN output scores for the test group was used as the
performance index for that training cycle. The average of the
Az values from the three test groups represented the perfor-
mance of the BP-ANN with N hidden nodes. In our experi-
ment, a BP-ANN with 3 hidden nodes provided the largest
average Az value and was therefore chosen. The weights of
the chosen BP-ANN were retrained with the entire training
subset. The BP-ANN with the trained weights was used to
merge the information from the two single CAD systems.

To test the dual system, the two trained single CAD sys-
tems, one trained with the average mass set and the other
with the subtle mass set, were applied in parallel to each
single “unknown” mammogram in the independent test sub-
set. No prior mammogram was needed during testing.

3. Evaluation methods

The detected individual objects were compared with the
“truth” ROI marked by the experienced radiologist, as de-
scribed earlier. A detected object was scored as TP if the
overlap between the bounding box of the detected object and
the bounding box of the true mass relative to the larger of the
two bounding boxes was over 25%. Otherwise, it would be
scored as FP. The 25% threshold was selected as described in
our previous study.21

The FP marker rate was estimated in two ways: one from
detection on the same test subsets with masses, the other
from detection on the normal data set of negative mammo-
grams. For the latter, we applied the trained dual CAD sys-
tem to the normal data set. The number of FP marks pro-
duced by the CAD system was determined by counting the
detected objects on the normal cases. The mass detection
sensitivity was determined by counting the detected masses
on the test mass subset. The detection performance of the
CAD system was assessed by free response ROC �FROC�
analysis. A FROC curve was obtained by plotting the mass
detection sensitivity as a function of FP marks per image
either obtained from the mass data subset or the normal set at
the corresponding decision threshold.

FROC curves were presented on a per-mammogram and a
per-case basis. For image-based FROC analysis, the mass on
each mammogram was considered an independent true ob-

ject. For case-based FROC analysis, the same mass imaged
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on the two-view mammograms was considered to be one true
object and detection of either or both masses on the two
views was considered to be a TP detection.

Since we used two-fold cross validation method for train-
ing and testing, we obtained two test FROC curves, one for
each test subset, for each of the conditions �e.g., single CAD
system approach or dual system approach�. To summarize
the results for comparison, an average test FROC curve was
derived by averaging the FP rates at the same sensitivity
along the FROC curves of the two corresponding test sub-
sets.

In order to compare the performance of the single CAD
system and the dual CAD system, we applied the alternative
free-response ROC �AFROC� method and the jackknife free-
response ROC �JAFROC� method developed by Chakraborty
et al.50,51 to the pairs of FROC curves. In the AFROC
method, the FROC data are first transformed by counting the
number of false-positive images �FPIs� instead of the FPs per
image. The confidence rating of a FPI is determined by the
highest confidence FP decision on the image regardless of
how many lower confidence FP decisions are made on the
same image. The ROCKIT curve fitting software and statistical
significance tests for ROC analysis developed by Metz et
al.46 can then be used to analyze the AFROC data.

III. RESULTS

Figure 5 shows an example of the two-dimensional fea-
ture space that was used as the input to the BP-ANN being
trained to merge the information from the two single CAD
subsystems. The two features are the output scores of the
LDA classifiers trained with the average masses and with the
subtle masses. The correlation coefficients of the two fea-
tures are 0.46 and 0.44 for each of the training subsets, re-
spectively. The low correlation indicated that the two single
CAD systems extracted relatively independent features from
the object. The Az values of the chosen ANN were 0.92±0.01
and 0.87±0.01, respectively, as estimated by validation in

FIG. 5. An example of a scatter plot of the LDA scores from the two single
CAD systems which are used as input to the BP-ANN. The correlation
coefficient between the scores of two LDA classifiers is 0.46, indicating that
the two LDA scores are essentially independent features.
the training process. The ANN classifiers achieved Az values
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of 0.90±0.02 and 0.89±0.01 on the two independent test
subsets, respectively. Figure 6 shows the ROC curves for the
two test subsets.

In order to evaluate the effectiveness of our dual system
approach, we compared its performance on the test subsets
containing average masses with two other single CAD sys-
tems: the CAD system trained only on the average mass set
and the CAD system trained on both the average and the
subtle mass sets. When a single CAD system was trained
only with the average masses, the number of selected fea-
tures was 21 �14 global and 7 local� and 16 �10 global and 6
local� texture features for the two independent training sub-
sets, respectively. When the CAD system was trained with
both the average and the subtle masses, the number of se-
lected features was 17 �11 global and 6 local� and 18 �7
global and 11 local� texture features for the two independent
training subsets, respectively.

For the dual system, the single system trained with the
average masses was the same as that described earlier. For
the single system trained with subtle masses, four �2 gray
level and 2 RLS texture� and five �3 gray level and 2 RLS
texture� features were selected for the two independent train-
ing subsets, respectively.

The average test FROC curves of the dual CAD system
on the test subsets with average masses were compared to
those of the single CAD systems in Fig. 7. The FP rates were
estimated from the mass data set. The dual CAD system
achieved a case-based sensitivity of 80%, 85%, and 90% at
0.6, 0.8, and 1.0 FPs/image, respectively, compared with 1.3,
1.5, and 1.8 FPs/image on the single CAD system trained
with average masses alone. The performance of the single
CAD system trained with both the average masses and the
subtle masses was comparable to that trained with average
masses alone, with FP rates of 1.4, 1.6, and 1.8 FPs/image at
the same sensitivities, respectively. Figure 8 shows the com-
parison of the three average test FROC curves, similar to
those shown in Fig. 7, except that the FP rates were esti-
mated from the normal data set. The FP rates at a few se-
lected sensitivities for the dual and single CAD systems were

FIG. 6. The test ROC curves for the BP-ANN classifiers from the two in-
dependent mass subsets. The ANN classifiers achieved an Az value of
0.90±0.02 for test subset 1 and 0.89±0.01 for test subset 2 in the classifi-
cation of mass and normal breast tissues.
summarized in Table II.
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In this study, we have 67 malignant cases in the average
mass set. Figure 9 compares the average test FROC curves of
the single CAD system and the dual system for detection of
malignant masses. The result for the single CAD system
trained with average masses was shown and the FP rate was
estimated from the mammograms without masses. In this
case, the dual CAD system achieved a case-based sensitivity
of 80%, 85%, and 90% at 0.6, 0.9, and 1.2 FP marks/image,
respectively, compared with 1.1, 1.6, and 2.0 FP marks/
image on the single CAD system.

An important purpose of a CAD system is to serve as a
second reader to alert radiologists to subtle cancers that may
be overlooked. Figures 10 and 11 compare the average
FROC curves of the single CAD system and the dual system
for detection in the test subsets with subtle masses. The TP
rate in Fig. 10 was estimated by including both malignant
and benign masses and that in Fig. 11 was estimated from
malignant masses only. The single CAD system trained with

FIG. 7. Comparison of the average test FROC curves obtained from aver-
aging the FROC curves of the two independent average-mass subsets. Three
CAD systems were compared: a single CAD system trained with average
masses alone, a single CAD system trained with both the average and the
subtle masses, and the dual CAD system. The FP rate was estimated from
the mammograms with masses. �a� Image-based FROC curves, �b� case-
based FROC curves.
average masses alone was used. The FP rates for both sys-
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tems were estimated from the mammograms without masses.
The dual CAD system achieved a case-based sensitivity of
50% at 0.7 FP marks/image for all masses and at 0.5 FP
marks/image for malignant masses only, compared with 1.4

FIG. 8. Comparison of the average test FROC curves obtained from aver-
aging the FROC curves of the two independent average-mass subsets. Three
CAD systems were compared: a single CAD system trained with average
masses only, a single CAD system trained with the average and the subtle
masses, and the dual CAD system. The FP rate was estimated from the
mammograms without masses. �a� Image-based FROC curves, �b� case-
based FROC curves.

TABLE II. Comparison of case-based detection performance between the
dual system and the single CAD system trained with average masses alone.
The FP marker rates were estimated from detection on the normal data set.
The FROC curves were obtained by averaging the FROC curves of the two
test subsets.

TP

Average mass test set
�FP marks/image�

Subtle mass test set
�FP marks/image�

Single system Dual system Single system Dual system

90% 2.2 1.2
80% 1.5 0.7 2.8
70% 1.0 0.3 2.4 2.3
60% 0.5 0.2 1.8 1.5
50% 0.3 0.1 1.4 0.7
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FP marks/image for all masses and 1.1 FP marks/image for
malignant masses only using the single CAD system.

Table II summarizes the test results on the average and
subtle mass sets for the dual system and the single CAD
system trained with average masses at different sensitivity
levels. The FP marker rates were estimated from the detec-
tion on the normal data set.

The comparison of the FROC curves for the dual CAD
system and the single CAD system in terms of the area under
the fitted AFROC curve �A1� and the p values for both test
subsets with average masses was summarized in Table III.
The differences between the A1 values for the two systems
were statistically significant �p�0.05�. The fitted AFROC
curves, however, did not fit very well to the transformed
AFROC data, as we discussed previously.24 For the JAFROC
method, Chakraborty et al. provided software to estimate the
statistical significance of the difference between two FROC
curves. The comparison of the figure-of-merit �FOM� and the

FIG. 9. Comparison of the average test FROC curves of the single CAD
system and the dual CAD system for detection of malignant masses in the
average data set. The single system trained with average masses alone was
used and the FP rate was estimated from the mammograms without masses.
�a� Image-based FROC curves, �b� case-based FROC curves.
p values was also summarized in Table III. The differences
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between the FOM of the dual CAD system and that of the
single CAD system for both test subsets were again statisti-
cally significant �p�0.05�.

The comparison of A1, the FOM, and the p values for the
dual system and the single system trained with average
masses in detecting subtle masses was summarized in Table
IV. It was found that the differences between the results of
the dual CAD system and those of the single CAD system on
the two test subsets containing subtle masses were statisti-
cally significant by both the JAFROC and the AFROC meth-
ods.

IV. DISCUSSION

The masses on prior mammograms are more subtle and
more difficult to detect than the masses on current mammo-
grams. In this study, we developed a dual CAD system,
which combines a system trained with masses on prior mam-
mograms and a system trained with masses detected on cur-
rent mammograms. We have demonstrated that this dual sys-

FIG. 10. Comparison of the average test FROC curves for the single CAD
system and the dual CAD system for detection of the subtle masses on the
prior mammograms. The single CAD system trained with average masses
alone was used and the FP rate was estimated from the mammograms with-
out masses. �a� Image-based FROC curves, �b� case-based FROC curves.
tem can increase the accuracy of detecting both average
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masses and subtle masses. The comparisons of the dual sys-
tem with that of the single CAD system trained with average
masses alone and that of the single CAD system trained with
both average and subtle masses �Fig. 7� indicate that the gain
in the detection accuracy of the dual system could not be
achieved by simply using a larger training set with both av-
erage and subtle masses. In fact, it is interesting to note that
the performance of the single CAD system trained with both
the average and the subtle masses appeared to be degraded
slightly, in comparison with the single system trained with
average masses alone, when it was applied to the test set of
average masses. The decreased performance may reflect the
compromise made when the single CAD system was trained
to accommodate a wide range of lesion characteristics. Thus,
the dual system approach may have improved its perfor-
mance through other factors, including the flexibility in using
different feature spaces and training the parameters for each
type of masses and the information fusion combining the two

FIG. 11. Comparison of the average test FROC curves for the single CAD
system and the dual CAD system for detection of subtle malignant masses
on the prior mammograms. The single CAD system trained with average
masses alone was used and the FP rate was estimated from the mammo-
grams without masses. �a� Image-based FROC curves, �b� case-based FROC
curves.
single CAD systems effectively.
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For the comparison of the different systems, we analyzed
the false negatives �FNs� of the single CAD systems and the
dual CAD system when the test subsets with average masses
were used. It was found that the FN rates of the single CAD
system trained with average masses, the single CAD system
trained with subtle masses, and the dual system were 23.9%
�55/230�, 28.3% �65/230�, and 16.5% �38/230�, respec-
tively, after FP reduction by the morphological LDA classi-
fier in each system. Twenty-nine masses were missed by both
of the single systems. By using the dual system, 53 masses
that were FNs for either single system could be detected.
However, the masses that were missed by both of the single
CAD systems could not be recovered by the dual CAD
system.

Our motivation of this study is to improve the perfor-
mance of a CAD system for mass detection. A CAD detec-
tion system is generally intended for use in screening mam-
mography. At the screening stage, all lesions of concern
should be pointed out to radiologists so that the radiologists
can judge if a recall is warranted. If a detection system is
trained to mark only the malignant lesions, it may be at-
tempting to play the role of a triage system �alerting radiolo-
gists to work up only “malignant” cases� rather than that of a
second reader. Furthermore, since computerized lesion detec-
tion or characterization on mammograms is not 100% sensi-

TABLE III. Estimation of the statistical significance in
system and the single CAD system trained with avera
average mass test subsets. The FROC curves with th
compared.

A1 �AFROC�

All cases Malignant c

Test
subset 1

Test
subset 2

Test
subset 1 su

Single
system

0.45 0.44 0.47

Dual
system

0.55 0.53 0.58

p values 0.0004 0.0156 0.0003 0

TABLE IV. Estimation of the statistical significance in
system and the single CAD system trained with avera
subtle mass test subsets. The FROC curves with the
compared.

A1 �AFROC�

All cases Malignant c

Test
subset 1

Test
subset 2

Test
subset 1 su

Single
system

0.17 0.20 0.24

Dual
system

0.28 0.25 0.35

p values �0.0001 0.046 �0.0001 0
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tive, it will be confusing to the radiologists whether an un-
marked suspicious lesion is missed or it is considered benign
by the computer. We believe that computer-aided diagnosis
�CADx� may be used in different ways in conjunction with a
CAD detection system, for example, the likelihood of malig-
nancy may be estimated by the CADx system and displayed
for every detected lesion, and/or a CADx system may be
used during diagnostic workup. Either way the CAD system
will first alert radiologists to all masses, leaving the assess-
ment of malignancy or benignity to a second stage and with
the radiologist being the primary decision maker. The train-
ing set thus included both malignant and benign masses.

For a CAD system, its performance for detecting malig-
nant masses is more important than its performance for de-
tecting all masses. The FROC curves for detection of malig-
nant masses on the average data set and the subtle data set,
shown in Figs. 9 and 11, respectively, indicated that the dual
system could also achieve an improvement in the detection
performance over that of the single system. The differences
in the A1 and the FOM for the detection of malignant cases in
the average and subtle mass test subsets were statistically
significant, as shown in Tables III and IV, respectively.

In screening mammography, the cancer rate is 3–5 per
1000. Most of the mammograms are normal. Therefore,
some CAD researchers and users estimate the FP rate using

ifference between the FROC performance of the dual
asses alone when the systems were evaluated on the
marker rates obtained from the normal data set were

FOM �JAFROC�

All cases Malignant cases

2
Test

subset 1
Test

subset 2
Test

subset 1
Test

subset 2

0.48 0.48 0.53 0.55

0.60 0.56 0.63 0.64

�0.0001 0.007 0.0004 0.0252

ifference between the FROC performance of the dual
asses alone when the systems were evaluated on the
arker rates obtained from the normal data set were

FOM �JAFROC�

All cases Malignant cases

2
Test

subset 1
Test

subset 2
Test

subset 1
Test

subset 2

0.21 0.23 0.24 0.26

0.30 0.28 0.36 0.34

0.0007 0.048 �0.0001 0.0035
the d
ge m

e FP

ases

Test
bset

0.52

0.62

.0318
the d
ge m
FP m

ases

Test
bset

0.25

0.34

.0067
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normal mammograms52–54 because it reflects how the CAD
system performs in terms of specificity and whether the CAD
system may cause extra efforts for radiologists to double
check the marked locations or unnecessary recalls in a
screening setting. Furthermore, for CAD systems that set a
maximum number of detected objects at the output, estimat-
ing the number of FPs using images with lesions can poten-
tially lead to an optimistic bias for the FROC curve because
one of the detected objects will likely be the true lesion. The
FP rate can thus be underestimated by as much as 1 per
image. In addition, the JAFROC analysis requires that the FP
rates be estimated on normal images. We therefore reported
the FP rates of our CAD systems on both mammograms with
masses and without masses to facilitate comparison with
other CAD systems in case investigators may evaluate their
FP rates in either way.

In this study, we evaluated the performance of the trained
CAD systems with an independent test set using the two-fold
cross validation method. Although the selection of param-
eters and features was performed using the training set, we
had full knowledge of the performance for the test set so that
the selections could be optimistically biased. True indepen-
dent testing will have to be performed with unknown cases
that have never been used for testing the CAD system before,
such as those in a prospective clinical trial. However, this
test step is beyond the scope of our current developmental
process. Since we used the same cross-validation method for
evaluation of the dual system and the single CAD systems,
the comparison of their relative performances is expected to
be less biased than their individual performances.

V. CONCLUSION

We have proposed a new dual system approach which
combines a system trained with subtle masses on prior mam-
mograms and a system trained with average masses on cur-
rent mammograms. The dual system achieved higher sensi-
tivities at the corresponding FP rates than a single CAD
system trained with average masses alone or trained with
both average masses and subtle masses. Alternatively, the
dual system had lower FP rates than the single CAD system
at corresponding sensitivities. The improvement in the
FROC curves by the dual system approach was found to be
statistically significant �p�0.05� for both average masses
and subtle masses using either the AFROC or the JAFROC
method. Our results indicate that the dual system approach is
promising for improving the performance of CAD systems
for mass detection on mammograms.
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Computer-Aided Detection Systems for
Breast Masses: Comparison of Performances on

Full-Field Digital Mammograms and Digitized
Screen-Film Mammograms1

Jun Wei, PhD, Lubomir M. Hadjiiski, PhD, Berkman Sahiner, PhD, Heang-Ping Chan, PhD, Jun Ge, PhD
Marilyn A. Roubidoux, MD, Mark A. Helvie, MD, Chuan Zhou, PhD, Yi-Ta Wu, PhD

Chintana Paramagul, MD, Yiheng Zhang, PhD

Rationale and Objectives. To compare the performance of computer aided detection (CAD) systems on pairs of full-field
digital mammogram (FFDM) and screen-film mammogram (SFM) obtained from the same patients.

Materials and Methods. Our CAD systems on both modalities have similar architectures that consist of five steps.
For FFDMs, the input raw image is first log-transformed and enhanced by a multiresolution preprocessing scheme.
For digitized SFMs, the input image is smoothed and subsampled to a pixel size of 100 �m � 100 �m. For both
CAD systems, the mammogram after preprocessing undergoes a gradient field analysis followed by clustering-based
region growing to identify suspicious breast structures. Each of these structures is refined in a local segmentation
process. Morphologic and texture features are then extracted from each detected structure, and trained rule-based and
linear discriminant analysis classifiers are used to differentiate masses from normal tissues. Two datasets, one with
masses and the other without masses, were collected. The mass dataset contained 131 cases with 131 biopsy proven
masses, of which 27 were malignant and 104 benign. The true locations of the masses were identified by an experi-
enced Mammography Quality Standards Act (MQSA) radiologist. The no-mass data set contained 98 cases. The time
interval between the FFDM and the corresponding SFM was 0 to 118 days.

Results. Our CAD system achieved case-based sensitivities of 70%, 80%, and 90% at 0.9, 1.5, and 2.6 false positive (FP)
marks/image, respectively, on FFDMs, and the same sensitivities at 1.0, 1.4, and 2.6 FP marks/image, respectively, on
SFMs.

Conclusions. The difference in the performances of our FFDM and SFM CAD systems did not achieve statistical signifi-
cance.

Key Words. Computer-aided detection; mass detection; full-field digital mammogram (FFDM); screen-film mammogram
(SFM); free-response receiver operating characteristic (FROC).
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Full-field digital mammography (FFDM) and screen-
film mammography (SFM) are two available methods
for breast cancer screening in clinical practice. FFDM
detectors provide higher detective quantum efficiency
(DQE) and signal-to-noise ratio (SNR), wider dynamic
range, and higher contrast sensitivity than SFM. FFDM
may alleviate some of the limitations of SFM, espe-
cially in breasts with dense fibroglandular tissue (1). In
the last few years, several FFDM systems became com-
mercially available because of the potential of digital
imaging to improve breast cancer detection.

Several clinical trials have been conducted to compare
radiologists’ interpretation on FFDMs and SFMs. Lewin
et al (2,3) conducted a clinical study to compare FFDMs
and SFMs for the detection of breast cancer in 6,737 ex-
aminations of women 40 years of age and older collected
from two institutions. Forty-two cancers were detected
within this population. The difference in cancer detection
was not statistically significant (P � .1) between FFDMs
and SFMs. FFDMs resulted in fewer recalls than did
SFM, which was statistically significant (P � .001). An-
other clinical trial (4) aiming at collecting data for US
Food and Drug Administration approval included SFMs
and FFDMs of 676 women who were scheduled to un-
dergo breast biopsy. The average area under the receiver
operating characteristic (ROC) curve, the sensitivity and
the specificity were 0.715, 0.66 and 0.67 for printed
FFDM and 0.765, 0.74, 0.60 for SFM, respectively. How-
ever, none of these differences achieved statistical signifi-
cance. Skaane et al (5–7) has conducted several clinical
studies to compare SFM and FFDM with soft-copy inter-
pretation for reader performance in detection and classifi-
cation of breast lesions. According to their findings, there
was no significant difference between FFDM and SFM
either in detection or in classification. A recent study by
Pisano et al (1) collected a total of 49,528 patients at 33
sites in the United States and Canada. Mammograms
were interpreted independently by two radiologists. The
overall diagnostic accuracy of FFDMs and SFMs for
breast cancers was similar. However, FFDM was more
accurate in women younger than age 50 years, women
with radiographically dense breasts, and premenopausal or
perimenopausal women.

Studies indicate that radiologists do not detect all car-
cinomas that are visible on retrospective analyses of the
images (8–14). Computer-aided diagnosis (CAD) is con-
sidered to be one of the promising approaches that may
improve the sensitivity of mammography (15,16). Most of

the mammographic CAD systems developed so far are
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based on digitized SFMs. Li et al (17) attempted to adapt
their CAD system developed on SFMs for detection of
masses on FFDMs by standardizing the FFDMs. Their
preliminary results on a small data set (training on 36
normal and 24 mass cases, testing on 24 normal and 10
mass cases) showed 60% sensitivity at 2.47 false posi-
tives (FPs)/image. Several commercial CAD systems re-
ported comparable performance on FFDMs and SFMs.
However, their study was not reported in peer-reviewed
journals, so that the dataset and algorithm are unknown.
So far, there are no studies on comparison of breast mass
detection between FFDMs and SFMs from the same pa-
tients by using CAD system. We have developed a CAD
system for mass detection on SFMs (18,19) and are
adapting the system to FFDMs. Our preliminary study
with 65 patients was reported previously (20). In this
study, we compared the performance of the two CAD
systems on case-matched pairs of FFDMs and SFMs.

MATERIALS AND METHODS

Materials
Our study group consisted of patients with breast le-

sions that were categorized suspicious and recommended
for biopsy. The patients had either FFDM or SFM for
their clinical exams. Institutional review board approval
and patient informed consent were obtained to acquire
corresponding mammograms of the breast to be biopsied
using the other modality. Therefore, the corresponding
FFDM and SFM were available only from one breast for
each patient. The time interval between the SFM and the
FFDM ranged from 0 to 118 days. The dataset consisted
of 229 patients aged 30–86 with a mean age of 55 � 11
years. All cases have two mammographic views, the
craniocaudal view and the mediolateral oblique view or
the lateral view, yielding a total of 458 FFDMs and 458
corresponding SFMs. The SFMs were acquired with
MinR2000 screen-film systems (Eastman Kodak,
Rochester, NY) and digitized with a LUMISCAN 85 laser
film scanner (Lumisys, Los Altos, CA) at a pixel resolu-
tion of 50 �m � 50 �m and 4096 gray levels. The digi-
tizer was calibrated so that gray-level values were linearly
proportional to the optical density in the range of 0–4,
with a slope of 0.001 per pixel value. The digitizer output
was linearly converted so that a large pixel value corre-
sponded to a low optical density. FFDMs were acquired
with a GE Senographe 2000D system (GE Medical Sys-

tems, Milwaukee, WI). The GE system has a CsI
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phosphor/a:Si active matrix flat panel digital detector with
a pixel size of 100 �m � 100 �m and 14 bits per pixel.
The raw FFDMs were used as the input of our CAD sys-
tem.

The dataset included 131 cases containing masses
and 98 cases containing microcalcifications without a
visible mass, as determined with visual inspection by
an experienced radiologist. The 131 cases will be re-
ferred to as the mass dataset and the 98 cases as the
“no-mass” data set in the following discussion. The
no-mass cases were considered as “normal” with re-
spect to masses and were used to estimate the FP mark
rates of the CAD systems during testing. The mass
dataset contained 131 biopsy proved masses, of which
27 were malignant and 104 benign. By examining all
available information, including the diagnostic mam-
mograms and reports, the true locations of the masses
were identified by an experienced Mammography Qual-
ity Standards Act (MQSA) radiologist. In these 131
mass cases, 1 mass can be seen only on FFDMs, 7
masses can be seen on only one view on both FFDMs
and SFMs, and 3 masses can be seen on only one view
on either FFDMs (1 mass) or SFMs (2 masses). There
were therefore 131 visible masses on FFDMs and 130
visible masses on SFMs if the masses were counted by
case. There were 254 visible and 8 invisible masses on
FFDMs and 251 visible and 11 invisible masses on
SFMs if the masses were counted independently by
mammographic view. The number of images and
masses in the mass dataset are described in Table 1.
Figure 1 shows an example with a 7-mm malignant
mass. The size of a mass was estimated as its longest
diameter seen on the mammograms. The visibility of the
masses was rated by the experienced radiologist on a 10-

Table 1
Description of Cases in the Mass Datasets and Subsets for Tra

Mass S

FFDM

Total number of cases 131
Total number of images 262
Number of visible masses (by case) 131
Number of masses only visible on one view 8
Number of visible masses (by image) 254
Number of visible malignant masses 27
Number of visible benign masses 104

FFDM: full-field digital mammogram; SFM: screen-film mammog
point scale, with 1 representing the most visible masses and
10 the most difficult case relative to the cases seen in clini-
cal practice. Figures 2 and 3 show the histograms of mass
sizes and visibility, respectively, for the mass set. The mass
size ranged from 3 to 30 mm (mean: 12.5 � 4.9 mm on
FFDMs and 12.6 � 4.9 mm on SFMs) and the visibility
ratings extended over the entire range. Figure 4 shows the
breast density in terms of BI-RADS category as estimated

Figure 1. An example of mammograms with a region of interest
(ROI) containing a malignant mass with a size of 7 mm. (a) Pro-
cessed full-field digital mammogram (FFDM) by using the Lapla-
cian pyramid multiscale method, (b) digitized screen-film mam-
mogram (SFM), (c) magnified ROI on FFDM, and (d) magnified
ROI on SFM. The SFM is displayed with the same resolution as
that of the FFDM. The apparently smaller breast size on SFM is
mainly caused by the very dark breast periphery region on the
SFM that cannot be seen on the printed page.

and Testing in the Twofold Cross-Validation Scheme

Mass Subset 1 Mass Subset 2

FM FFDM SFM FFDM SFM

31 65 65 66 66
62 130 130 132 132
30 65 65 66 65

9 5 5 3 4
51 125 125 129 126
27 12 12 15 15
03 53 53 51 50
ining

et

S

1
2
1

2

1

by the radiologist for the FFDM and SFM datasets.

661



WEI ET AL Academic Radiology, Vol 14, No 6, June 2007
METHODS

CAD System
The major steps in the mass detection systems on

FFDMs and SFMs are similar, but the feature spaces and
classifiers for FP reduction in each system were designed
separately to suit the characteristics of FFDMs and SFMs.
The two systems are therefore described together, but the
differences will be pointed out whenever applicable. Each

Figure 2. Histogram of the sizes for 254 masses on full-field
digital mammograms (FFDMs) and 251 masses on the screen-film
mammograms (SFMs) in our dataset. Mass sizes are measured as
the longest dimension of the mass by an experienced Mammog-
raphy Quality Standards Act (MQSA) radiologist. The size of the
masses in the dataset ranged from 3 to 30 mm (mean: 12.5 � 4.9
mm on FFDMs and 12.6 � 4.9 mm on SFMs).

Figure 3. Histogram of the visibility of the 254 masses seen on
full-field digital mammograms and 251 masses seen on screen-
film mammograms in our dataset. The visibility is evaluated on a
10-point rating scale, with 1 representing the most visible masses
and 10 the most difficult case relative the cases seen in their clin-
ical practice. Each mass on a mammogram is rated indepen-
dently by an experienced MQSA radiologist.
single CAD system consists of five processing steps:
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1) preprocessing, 2) prescreening of mass candidates, 3)
segmentation of suspicious objects, 4) feature extraction
and analysis, and 5) FP reduction by classification of nor-
mal tissue structures and masses.

FFDMs are generally preprocessed with proprietary
methods by the manufacturer of the FFDM system before
being displayed to readers. The image preprocessing
method used depends on the manufacturer of the FFDM
system. To develop a CAD system that is less dependent
on the FFDM manufacturer’s proprietary preprocessing
methods, we use the raw FFDM as input to our CAD
system. We have previously developed a multiscale pre-
processing scheme for image enhancement (21). In brief,
the raw mammogram is first segmented automatically into
the background and the breast region. A logarithmic
transform is applied to the image which is then scaled to
12-bit. The Laplacian pyramid method (21,22) is used to
decompose the transformed breast image into multiscales.
A nonlinear weight function based on the pixel gray level
from each of the low-pass components is designed to en-
hance the high-pass components. The processed image is
reconstructed by summing the weighted components.

For SFMs, the full resolution digitized mammograms
are smoothed with a 2 � 2 box filter and subsampled by
a factor of 2, resulting in images having a pixel size of
100 �m � 100 �m. These images are used as input to
the CAD system.

After preprocessing, a two-stage gradient field analysis

Figure 4. Distribution of the breast density for the 229 cases in
terms of BI-RADS category estimated by an MQSA radiologist.
method (21,23) is used to identify the mass candidates for



Academic Radiology, Vol 14, No 6, June 2007 COMPUTER-AIDED DETECTION SYSTEMS FOR BREAST MASSES
either FFDMs or SFMs. In brief, a gradient field analysis
is employed in the first stage to identify potential mass
candidates based on high values of the initial gradient
field. Each potential mass candidate is segmented by a
region growing technique. The shape and the gray-level
information of the segmented object allow adaptive re-
finement of the gradient field analysis in the second stage.
Locations of high radial gradient convergence are then
labeled as mass candidates. These suspicious objects are
segmented with a k-means clustering method (24). First, a
256 � 256 pixel region of interest (ROI) centered at the
high gradient point is background-corrected (25) and
weighted by a Gaussian function with � � 256 pixels.
K-means clustering using the pixel values in a back-
ground-corrected image and a Sobel filtered image as fea-
tures is then used to segment the object.

For each suspicious object, eleven morphological fea-
tures (18) are extracted. A rule-based classifier removes
the detected structures that are substantially different from
breast masses. Global and local multiresolution texture
analyses (26) are performed in each ROI by using the
spatial gray-level dependence (SGLD) matrices. Thirteen
SGLD texture measures are used. Global texture features
are extracted from the entire ROI for two scales, seven
distances, and two angles. Local texture features are ex-
tracted from the local region containing the detected ob-
ject and the peripheral regions within each ROI for two
scales, four distances, and two angles. Therefore, a total
of 364 features and 208 features, respectively, are ex-
tracted from global and local texture analysis. The feature
space for final classification is the combination of mor-
phologic features and SGLD texture features. Finally, lin-
ear discriminant analysis (LDA) is used to classify masses
from normal tissue in the feature space. The discriminant
scores are ranked for each mammogram, and any object
with a discriminant score that ranks lower than three is
eliminated.

Training and Test CAD System
Twofold cross-validation was used for training and

testing our CAD system for FFDMs. We randomly sepa-
rated the mass datasets by case into two independent sub-
sets: subset 1 with 65 cases and subset 2 with 66 cases.
The numbers of masses by image and by case for the
FFDM and SFM subsets are shown in Table 1. The train-
ing included selection of proper parameters and features
for the classifier in the CAD system. After the training
with one mass subset was completed, the parameters and

features were fixed for testing with the other mass subset.
The training and test mass subsets were switched and the
training and test processes were repeated. The trained
CAD systems were also applied to the no-mass data set,
which was not used during training, to estimate the FP
rate in screening mammograms.

During training, feature selection with stepwise LDA
was applied to obtain the best feature subset and reduce
the dimensionality of the feature space to design an effec-
tive classifier. The detailed procedure has been described
elsewhere (21,27,28). Briefly, at each step one feature
was entered or removed from the feature pool by analyz-
ing its effect on the selection criterion, which was chosen
to be the Wilks’ lambda in this study. Because the appro-
priate threshold values for feature entry, feature elimina-
tion, and tolerance of feature correlation were unknown,
we used an automated simplex optimization method to
search for the best combination of thresholds in the pa-
rameter space. The simplex algorithm used a leave-one-
case-out resampling method within the training subset to
select features and estimate the weights for the LDA clas-
sifier. To have a figure of merit to guide feature selection,
the test discriminant scores from the left-out cases were
analyzed using ROC methodology (29). The accuracy for
classification of masses and FPs was evaluated as the area
under the ROC curve, Az, for the test cases. In this ap-
proach, feature selection was performed without the left-
out case so that the test performance would be less opti-
mistically biased (30). However, the selected feature set
in each leave-one-case-out cycle could be slightly differ-
ent because every cycle had one training case different
from the other cycles. To obtain a single trained classifier
to apply to the cross-validation test subset, a final step-
wise feature selection was performed with the best combi-
nation of thresholds, found in the simplex optimization
procedure, on the entire training subset to obtain the final
set of features and estimate the weights of the LDA. Note
that the entire process of feature selection and classifier
weight estimation was performed within the training sub-
set. The LDA classifier with the selected feature set was
then fixed and applied to the cross-validation test subset.
The training and testing processes were performed inde-
pendently for the twofold cross-validation sets.

Because we already trained our CAD system for SFMs
with a large dataset in a previous study (19), we used the
trained system without retraining the parameters in this
study. For testing, we divided the SFMs into two test
datasets that followed the same case grouping as that for

FFDMs. The test cases in each subset did not overlap
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with any training cases used for training the SFM CAD
system in the previous study.

Evaluation Methods
We used a free-response ROC (FROC) method (31) to

assess the overall performance of the CAD scheme on
this image set. A FROC curve is obtained by plotting the
mass detection sensitivity as a function of FP marks per
image as the decision threshold on the LDA classifier
scores varies.

The detected individual objects were compared with
the “true” mass locations marked by the experienced radi-
ologist, as described previously. A detected object was
labeled as true positive (TP) if the overlap between the
bounding box of the detected object and the bounding
box of the true mass relative to the larger of the two
bounding boxes was over 25%. Otherwise, it would be
labeled as FP. The 25% threshold was selected as de-
scribed in our previous study (18).

FROC curves were presented on a per-image and a
per-case basis. For image-based FROC analysis, the mass
on each mammogram was considered an independent true
object; the sensitivity was thus calculated relative to the
number of masses by image on each subset of FFDMs or
SFMs (Table 1). For case-based FROC analysis, the same
mass imaged on the two-view mammograms was consid-
ered to be one true object and detection of either or both
masses on the two views was considered to be a TP de-
tection; the sensitivity was thus calculated relative to the
number of masses by case on each subset of FFDMs or
SFMs (Table 1). The test FROC curve for a given mass
subset was estimated by counting the detected masses on
the test mass subset for the sensitivity. The FP marker
rate was estimated in two ways: one from FPs detected in
the same test mass subsets, the other from FPs detected in
the no-mass dataset. For the latter, we applied the trained
CAD system to the entire no-mass dataset. The average
number of FP marks per image produced by the CAD
system at a given sensitivity was estimated by counting
the detected objects in these cases at the corresponding
decision threshold. Because we used twofold cross-valida-
tion method for training and testing, we obtained two test
FROC curves, one for each test subset, for each of the
modalities. To summarize the results for comparison, an
average test FROC curve was derived by averaging the
FP rates at the same sensitivity along the FROC curves of
the two corresponding test subsets.

To compare the performance of our CAD system for

FFDMs and SFMs statistically, we applied the alternative
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free-response ROC (AFROC) method and the jackknife
free-response ROC (JAFROC) method developed by
Chakraborty et al (32,33) to the pairs of FROC curves. In
the AFROC method, the FROC data are first transformed
by counting the number of false-positive images instead
of the FPs per image. The LDA score of a false-positive
image is determined by the highest score FP object on the
image regardless of how many lower scores FP objects
are made on the same image. The ROCKIT curve fitting
software and statistical significance tests for ROC analysis
developed by Metz et al (29) can then be used to analyze
the AFROC data.

RESULTS

For simplicity, we combined the detection results on
the two test subsets from the twofold cross-validation pro-
cess in the following discussion. The prescreening stage
detected 91.3% (232/254) of the masses with an average
of 10.13 (2,655/262) FPs /image on FFDMs and 93.2%
(234/251) with an average of 14.43 (3,781/262) FPs/im-
age on SFMs. Figure 5 compares the FROC curves on
FFDMs and SFMs during the prescreening stage. The
FROC curves were generated by varying the number of
detected suspicious objects per image based on the rank-

Figure 5. Comparison of free-response receiver operating char-
acteristic (FROC) curves on full-field digital mammograms and
screen-film mammograms during the prescreening stage. The
FROC curves were generated by varying the number of detected
suspicious objects per image based on the ranking of the local
maxima on gradient field images. The FP rate was estimated from
the mammograms with masses.
ing of local maxima on the gradient field images.
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We used two steps for FP reduction for both CAD
systems. The first step was the rule-based classification
based on morphologic features. After this step, there were
2,572 mass candidates (9.8 objects/image) on FFDMs and
3,654 mass candidates (13.9 objects/image) on SFMs
without additional FNs for the test sets of 262 images.
The second step was the LDA classification. A total of 16
(4 global texture features, 7 local texture features, and 5
morphologic features) and 12 (4 global texture features, 4
local texture features, and 4 morphologic features) fea-
tures, respectively, were selected from the two indepen-
dent training subsets for FFDMs. The feature set for
SFMs contained a total of 21 features (11 global texture
features, 7 local texture features, and 3 morphologic fea-
tures), as obtained from previous training.

Figure 6 shows the comparison of the average test
FROC curves of the CAD systems for FFDMs and SFMs.
The FFDM CAD system achieved a case-based sensitivity
of 70%, 80%, and 90% at 0.67, 1.15, and 1.93 FPs/image,
respectively, compared with 0.75, 1.06, and 1.86 FPs/
image for the SFM CAD system. Because two trained
CAD systems were obtained for the FFDMs from the
cross-validation training, we applied each of the trained
systems to the no-mass data set for FROC analysis, and
estimated the number of FP marks per image on the no-
mass cases at each decision threshold. For each trained
CAD system, the sensitivity was estimated from the de-
tected masses on the test mass subset and plotted against
the FP rate estimated from the no-mass set. Figure 7
shows the average FROC curves for FFDMs and SFMs,
similar to those shown in Fig 6, except that the FP rates
were estimated from the no-mass data set.

The comparison of the FROC curves for the FFDM
and SFM CAD systems in terms of the area under the
fitted AFROC curve (A1) and the P values for both test
mass subsets are summarized in Table 2. The differences
in the A1 values between the two modalities did not
achieve statistical significance (P � .05). The fitted
AFROC curves, however, did not fit very well to the
transformed AFROC data, as discussed previously (21).
For the JAFROC method, Chakraborty et al provided
software to estimate the statistical significance of the dif-
ference between two FROC curves. The comparison of
the figure-of-merit (FOM) and the P values is also sum-
marized in Table 2. The differences in the FOMs between
the FFDM and SFM CAD systems again did not achieve
statistical significance (P � .05).

There were 27 malignant cases in the mass set.

Figure 8 compares the average test FROC curves of the
FFDM and SFM CAD systems for detection of malignant
masses. The FP rate was estimated from the no-mass
dataset. In this case, the FFDM CAD system achieved a
case-based sensitivity of 70%, 80%, and 90% at 0.37,
0.73, and 1.31 FP marks/image, respectively, which were
substantially better than the FP rates of 1.1, 1.6, and 2.0
FP marks/image for the SFM CAD system. However, the
difference did not achieve statistical significance
(P � .05).

A total of 105 FFDM cases and 134 SFM cases were

Figure 6. Comparison of the average test free-response receiver
operating characteristic (FROC) curves obtained from averaging
the FROC curves of the two independent mass subsets on full-
field digital mammograms and screen-film mammograms. The FP
rate was estimated from the mammograms with masses. (a) Im-
age-based FROC curves and (b) case-based FROC curves.
identified as BI-RADS 3 and 4 categories by an MQSA
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radiologist (Fig 4). Of these, 88 cases (56 mass cases and
32 no-mass cases) were in common. Figure 9 compares
the average test FROC curves of the FFDM and SFM
CAD systems for detection of masses only on this com-
mon subset of dense breasts. The FP rate was estimated
from the 32 no-mass dense breasts. Although the FROC
curve for the FFDMs appears to be slightly higher than
that of the SFMs, the difference did not achieve statistical

Figure 7. Comparison of the average test free-response receiver
operating characteristic (FROC) curves obtained from averaging
the FROC curves of the two independent mass subsets on full-
field digital mammograms and screen-film mammograms. The
FP rate was estimated from the mammograms without masses.
(a) Image-based FROC curves and (b) case-based FROC
curves.
significance (P � .05).
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DISCUSSION

CAD systems have been proven to be helpful as a sec-
ond opinion to assist radiologists in interpretation of
SFMs. Recently several studies have been conducted to
compare FFDM with SFM in screening cohorts (1,4,5,34).
These clinical trials arrived at different conclusions about
the advantages or disadvantages of FFDM in comparison
to conventional SFM systems. Some of the differences
may be attributed to factors such as the mammographic
equipment, the study design, the sample sizes, and the
reader experience. It is also important to compare the per-
formances of FFDM and SFM CAD systems. In our
study, we compared the performance of the two systems
on pairs of FFDM and SFM obtained from the same pa-
tients at close time intervals.

Several FFDM systems have been approved for clini-
cal applications. Because digital detectors generally have
a linear response to x-ray exposure, the raw pixel values
are a linear function of the absorbed x-ray energy in the
detector. To develop a CAD system that is less dependent
on the FFDM manufacturer’s proprietary preprocessing
methods, we used the raw FFDM as input to our CAD
system. Although the spatial resolution and noise proper-
ties of the images from different detectors were still dif-
ferent, the use of raw images already reduced one of the
major differences between mammograms from different
FFDM systems. For preprocessing of the raw FFDMs, we
developed a multiresolution enhancement method. From
our observation on the SFMs and the processed FFDMs,
the breast tissue on SFMs appears to be denser than that
on FFDMs (35). This may be attributed to the harder
beam quality used and the Laplacian enhancement on
FFDMs. In this study, 134 SFM cases were rated as
BI-RADS 3 and 4 categories by an MQSA radiologist,
whereas only 105 FFDM cases were rated as BI-RADS 3
and 4. When the FFDM and SFM CAD systems were
applied to the small common subset (56 with masses and
32 without masses) of dense breasts rated as BI-RADS 3
and 4, there was no significant difference between their
average test FROC curves (Fig 9).

The overall performances of the CAD systems for the
two modalities did not demonstrate significant difference
for comparisons in either the subsets or the entire dataset.
One factor may be the substantially smaller number of
training samples used for the FFDM CAD system than
that for the SFM CAD system, which was trained with a

set of 486 SFMs in a previous study (19). We have



Image-based FROC curves and (b) case-based FROC curves.

FROC, ; FFDM, full-field digital mammogram; SFM, screen-film mamm
free-response receiver operating characteristic; FOM, figure-of-merit; JA

Academic Radiology, Vol 14, No 6, June 2007 COMPUTER-AIDED DETECTION SYSTEMS FOR BREAST MASSES
shown previously that a classifier designed with a larger
number of training samples will have better generalization
to unknown test cases (36). Furthermore, because our
CAD system was originally developed on SFMs, some of
those techniques used may favor SFMs. If new techniques
are designed to specifically suit the properties of FFDMs,
the biases may be reduced. Further investigations are un-
derway to improve the FFDM CAD system.

We used a twofold cross-validation method for training
and testing of the CAD systems. Feature selection and
classifier weight design were performed within the train-
ing subset and thus were independent of the test subset.
Kupinski et al (37) showed that feature selection and clas-
sifier weight design using the same training set of a lim-
ited size will introduce additional optimistic bias to the
training result and thus additional pessimistic bias to the
test result. Under the constraint of a limited training set,
the relative gain or loss in terms of bias if the training set
is further split into two subsets for separate feature selec-
tion and classifier weight design in comparison to using
the entire set of available training samples for both pro-
cesses is still unknown. The relative efficiency of differ-
ent resampling techniques in utilization of a limited data-
set for classifier design with or without feature selection
remains an important area of further studies. In screening
mammography, the cancer rate is about 3–5 per 1,000.
Most of the mammograms are normal. Therefore, some
CAD researchers and users estimate the FP rate using
normal mammograms (38–40) because it reflects how the
CAD system performs in terms of specificity in a screen-
ing setting. Furthermore, for CAD systems that set a max-
imum number of detected objects at the output, estimating
the number of FPs using images with lesions can poten-
tially lead to an optimistic bias for the FROC curve be-

OC Performances Between the FFDM and SFM CAD Systems

FOM (JAFROC)

All Cases Malignant Cases

2 Test Subset 1 Test Subset 2 Test Subset 1 Test Subset 2

0.47 0.48 0.55 0.47
0.46 0.41 0.48 0.42

.73 .33 .29 .59

s dataset were compared.
ogram; CAD, computed-aided detection; AFROC, alternative
FROC, jackknife free-response ROC.
Figure 8. Comparison of the average test free-response receiver
operating characteristic (FROC) curves of computed-aided detec-
tion systems on full-field digital mammograms and screen-film
mammograms for mammograms with malignant masses. The FP
rate was estimated from the mammograms without masses. (a)
Table 2
Estimation of the Statistical Significance of the Difference in the FR

A1 (AFROC)

All Cases Malignant Cases

Test Subset 1 Test Subset 2 Test Subset 1 Test Subset

FFDM 0.48 0.49 0.51 0.49
SFM 0.42 0.43 0.47 0.42
P values .17 .16 .56 .23

The FROC curves with the FP marker rates obtained from the no-mas
cause one of the detected objects will likely be the true
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lesion. The FP rate can thus be underestimated by as
much as 1 per image. In addition, the JAFROC analysis
requires that the FP rates be estimated on normal images.
We therefore reported the FP rates of our CAD systems
on both mammograms with masses and without masses to
facilitate comparison with other CAD systems in case
investigators may evaluate their FP rates in either way.

Although we collected case-matched cases for compar-
ing the performances of the CAD systems for FFDMs and

Figure 9. Comparison of the average test free-response receiver
operating characteristic (FROC) curves of computed-aided detec-
tion systems on full-field digital mammograms and screen-film
mammograms for the common subset of 56 dense breasts with
masses rated as BI-RADS 3 and 4. The FP rate was estimated
from 32 no-mass dense breasts that were also rated as BI-RADS
3 and 4. (a) Image-based FROC curves and (b) case-based
FROC curves.
SFMs, the images may not be exactly matched. Variations
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from positioning, compression force, and the difference in
time between the two acquisitions would cause differ-
ences in the subtlety of the masses on the FFDMs and
SFMs. However, assuming that the differences are ran-
dom, both datasets would include images that have better
or worse positioning, for example, than that on the other
modality. The differences in the various factors would
likely be averaged out over the entire dataset. We expect
that they might not cause substantial bias in the compari-
son of the relative performances of the CAD systems for
the two modalities.

For a CAD system, its performance for detecting ma-
lignant masses is more important than its performance for
detecting all masses. We only have 27 malignant cases in
this dataset. Although the FROC curves for detection of
malignant masses (Fig 8) indicated that the FFDM CAD
system had a higher sensitivity than that of the SFM
CAD system, the differences in the A1 and the FOM did
not achieve statistical significance (P � .05) for either
test subsets, as shown in Table 2. A large dataset is being
collected for further comparison of the FFDM and SFM
CAD systems for breast cancer cases.

Conclusion

We compared the performance of our CAD systems
for detection of breast masses on case-matched FFDM
images and SFM images. The two CAD systems used
similar computer vision techniques but their preprocessing
methods were different and the FP classifiers were sepa-
rately trained to adapt to the image properties of each
modality. From the comparison of FROC curves, it was
found that the FFDM CAD system achieved higher detec-
tion sensitivity than the SFM CAD system at the same FP
rates for malignant cases. However, the performances of
our FFDM and SFM CAD systems for the entire data set
were similar. The differences between the two modalities
were not statistically significant with both AFROC and
JAFROC methods for either the entire dataset or the ma-
lignant cases alone. Further study is under way to collect
a larger dataset and to improve the performances of both
systems.
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mass detection
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We have developed a false positive �FP� reduction method based on analysis of bilateral mammo-
grams for computerized mass detection systems. The mass candidates on each view were first
detected by our unilateral computer-aided detection �CAD� system. For each detected object, a
regional registration technique was used to define a region of interest �ROI� that is “symmetrical”
to the object location on the contralateral mammogram. Texture features derived from the spatial
gray level dependence matrices and morphological features were extracted from the ROI containing
the detected object on a mammogram and its corresponding ROI on the contralateral mammogram.
Bilateral features were then generated from corresponding pairs of unilateral features for each
object. Two linear discriminant analysis �LDA� classifiers were trained from the unilateral and the
bilateral feature spaces, respectively. Finally, the scores from the unilateral LDA classifier and the
bilateral LDA asymmetry classifier were fused with a third LDA whose output score was used to
distinguish true mass from FPs. A data set of 341 cases of bilateral two-view mammograms was
used in this study, of which 276 cases with 552 bilateral pairs contained 110 malignant and 166
benign biopsy-proven masses and 65 cases with 130 bilateral pairs were normal. The mass data set
was divided into two subsets for twofold cross-validation training and testing. The normal data set
was used for estimation of FP rates. It was found that our bilateral CAD system achieved a
case-based sensitivity of 70%, 80%, and 85% at average FP rates of 0.35, 0.75, and 0.95 FPs/image,
respectively, on the test data sets with malignant masses. In comparison to the average FP rates for
the unilateral CAD system of 0.58, 1.33, and 1.63, respectively, at the corresponding sensitivities,
the FP rates were reduced by 40%, 44%, and 42% with the bilateral symmetry information. The
improvement was statistically significance �p�0.05� as estimated by JAFROC analysis. © 2007
American Association of Physicists in Medicine. �DOI: 10.1118/1.2756612�

Key words: computer-aided detection �CAD�, bilateral analysis, mass detection, false positive
reduction
I. INTRODUCTION

Breast cancer is one of the leading causes of death among
American women between 40 to 55 years of age.1 It has been
reported that early diagnosis and treatment can significantly
improve the chance of survival for patients with breast
cancer.2–4 Although mammography is a powerful screening
tool for detecting breast cancer,5,6 studies indicate that a sub-
stantial fraction of breast cancers that are visible upon retro-
spective analyses of the images are not detected initially.7–9 It
has been shown that computer-aided detection �CAD� can
increase the cancer detection rate by radiologists both in the
laboratory and in clinical practice.10–15

In screening mammography, two mammographic views,
cranio-caudal �CC� and mediolateral oblique �MLO� views
are generally taken of each breast. During mammographic
interpretation, the radiologist combines complex information
including morphology, texture, and geometric location of any
suspicious structures of the imaged breast from different
views, asymmetric density patterns between bilateral mam-
mograms of the same view, and changes between the current

and the prior mammograms if available. Radiologists have
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found that these techniques are effective in improving the
accuracy of detecting subtle lesions and reducing false posi-
tives �FPs�.

Investigators have attempted to implement the multiple
image techniques in CAD systems to improve the detection
accuracy of abnormalities and the classification accuracy of
differentiating malignant and benign lesions. Hadjiiski et
al.16 developed an interval change analysis of masses on cur-
rent and prior mammograms and found that the classification
accuracy of masses can be improved significantly in com-
parison to single image classification. Paquerault et al.17 de-
veloped a two-view �CC and MLO views� fusion technique
to reduce FPs in mass detection and obtained significant im-
provement by comparing to their one-view detection system.
van Engeland et al.18 recently presented a two-view CAD
system by using the features including the difference in the
radial distance from the candidate regions to the nipple, the
gray scale correlation between both regions, and the mass
likelihood of the regions determined by the single view CAD
scheme. Yin et al.19 used bilateral subtraction in a prescreen-
ing step of a mass detection program to locate mass candi-

dates, but the subsequent image analysis was performed

3334…/3334/11/$23.00 © 2007 Am. Assoc. Phys. Med.
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based only on a single view. Mendez et al.20 developed a
bilateral CAD system based on a bilateral subtraction ap-
proach and used size and eccentricity tests and texture fea-
tures to eliminate FPs. Again, the bilateral information is
only used to find the suspicious objects and the subsequent
analysis is based on a single view.

The detection of masses on mammograms is a challenging
task. The normal fibroglandular tissue in the breast causes
FPs by mimicking masses and causes false negatives �FNs�
due to overlapping with lesions. In order to improve the per-
formance of our mass detection system, we are investigating
computer-vision methods by incorporating information from
two-view mammograms17 and bilateral mammograms,21

emulating radiologists’ mammographic interpretation tech-
niques. In this study, we will discuss our approach to FP
reduction by analyzing the symmetry or asymmetry of den-
sity patterns between bilateral mammograms.

II. MATERIALS AND METHODS

A. Data sets

A database of mammograms was collected from patient
files at the Department of Radiology with Institutional Re-
view Board approval. The mammograms were digitized by a
Lumiscan laser scanner with a pixel size of 50 �m
�50 �m and 12 bits per pixel. The pixel size was increased
to 100 �m�100 �m by averaging every 2�2 adjacent
pixels before being input to the CAD system. In this study,
two data sets are used: a mass data set containing bilateral
digitized mammograms with malignant or benign masses and
a no-mass data set containing bilateral digitized mammo-
grams without masses, verified by an experienced radiolo-

FIG. 1. The characteristics of our mass data set: �a� distribution of mas
circumscribed, Ind: indistinct, M: microlobulated, Ob: obscured, Sp: spicu
estimated by a MQSA radiologist.
gist. All cases had four mammographic views, the CC view
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and the MLO view mammogram for both breasts. The mass
set and the no-mass data set contained 276 cases �552 bilat-
eral pairs� and 65 cases �130 bilateral pairs�, respectively,
yielding a total of 1364 mammograms. The mass data set
was used to estimate the detection sensitivity and the no-
mass data set was used for estimating the FP rate �number of
FPs per image�. In the mass data set, each patient had a
biopsy-proven mass in one of the breasts, resulting in a total
of 276 masses, 166 of which were benign and 110 malignant.
A Mammography Quality Standard Act �MQSA� radiologist
identified the location of the masses based on all available
diagnostic and clinical information of the case, measured the
mass sizes as the longest dimension seen on the two-view
mammograms, provided descriptors of the mass shapes and
mass margins, and also provided an estimate of the breast
density in term of Breast Imaging Reporting and Database
System �BI-RADS� category. Figure 1 shows the information
of our data set which includes the distributions of mass sizes,
mass shapes, mass margins, and breast density.

For training and evaluation of the performances of the
CAD systems, the cases in our mass data set were divided
into two independent data subsets containing 136 and 140
cases, respectively, for twofold cross-validation training and
testing. Of the 136 cases in subset 1, 52 were malignant and
84 were benign. Of the 140 cases in subset 2, 58 were ma-
lignant and 82 were benign. The no-mass data set was not
used during training. All 260 mammograms were kept as
independent test samples to be used with both test subsets.

B. Methods

Our bilateral CAD system combines unilateral features

s, �b� distribution of mass shapes, �c� distribution of mass margins, C:
and �d� distribution of the breast density in terms of BI-RADS category
s size
lated,
with bilateral features to reduce FPs. Similar structures that
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appear in both right and left mammograms at corresponding
locations are more likely to be normal tissue than masses,
whereas asymmetric density may indicate a developing le-
sion. The key of this system is therefore the design of a
classifier that can differentiate symmetry and asymmetry of
paired regions of interest �ROIs� in corresponding regions on
bilateral mammograms of the same view. The system con-
sists of four steps: �1� mass candidate �MC� localization, �2�
corresponding ROIs �CR� registration, �3� feature extraction
and analysis, and �4� bilateral information fusion. Figure 2
shows the block diagram for our bilateral CAD system. The
detailed description for each step is presented below.

1. Mass candidate localization

Identification of mass candidates is performed by the fol-
lowing two steps: breast segmentation and mass candidate
detection. The breast image is first segmented from the sur-
rounding image background by boundary detection.

The algorithm developed by Zhou et al.22 in our labora-
tory is used to track the breast boundary and segment the
breast from the background. Mass detection is performed
only in the breast region. We have previously developed a
mass detection system for unilateral mammograms.23–25 The
system is used for mass candidate detection in the current
study. The system performs mass detection in two steps. In
the first step, a gradient field analysis method is used to
determine the seeds of mass candidates followed by a region
growing24 method to segment the mass candidates starting
from those seeds. In the second step, the gradient conver-
gence is calculated using the gray levels and the shape of the
segmented mass region as a priori information. The mass
candidates that pass the gradient convergence criterion are
retained for further analysis in the bilateral system. Figure 3
shows an example of mass candidates detected on a
mammogram. Figures 3�a�–3�c� show the original image,
detected breast boundary, and the detected mass candidates,

FIG. 2. Block diagram of the bilateral CAD system for mass detection on
mammograms.
respectively.
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2. Corresponding ROI registration

For each mass candidate, its corresponding ROI on the
contralateral mammogram is identified by the regional regis-
tration technique developed previously in our laboratory16

with a modification to handle the special case when the dis-
tance between the nipple location and the center of a ROI is
too small to obtain the intersection points on the breast
boundary. The nipple location on each image was manually
identified so that the effectiveness of the bilateral analysis
method could be evaluated independent of nipple detection
errors.

The original region registration technique included the
following steps. The registration is performed in a polar co-
ordinate system where the origin is located at the nipple lo-
cation of a breast image. Figure 4 shows an example of lo-
cating the corresponding ROI of a mass candidate on the
contralateral mammogram. Using the distance r from the
nipple o to the center of the mass as the radius, an arc cen-
tered at the origin �nipple� is drawn. The arc will intersect the
mass candidate and the breast boundary at two points, p and
q. The angle between om and op is defined as �, the angle
between op and oq is defined as �. On the contralateral
mammogram, the corresponding ROI m� is localized with a
similar procedure. An arc of radius r centered at the nipple o�
of the contralateral mammogram is drawn. The intersections
of the arc with the breast boundary are p� and q�. The angle

FIG. 3. An example of performing the mass candidate identification: �a� an
original mammogram, �b� the detected breast boundary of �a�, a mass is
marked by the arrow, and �c� the detected mass candidates of �a�.

FIG. 4. An example of obtaining the corresponding ROI of a mass candidate
on the contralateral mammogram: �a� mass candidate on the left MLO view

at m and �b� corresponding ROI on the right MLO view at m�.
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merged by a third LDA. The weights of this LDA classifier
were also trained with the training subset. The output score
from the third LDA is used to differentiate true positives
�TPs� from FPs in the bilateral CAD system.

5. Evaluation methods

The detected individual objects were compared with the
true mass location marked by an experienced radiologist. An
object was considered to be a TP if the overlap between the
detected object and the true mass was greater than 25%. The
25% threshold was selected as described in our previous
study.30

To evaluate the performance of our bilateral LDA classi-
fier, the test discriminant scores were analyzed using receiver
operating characteristic �ROC� methodology.31 The accuracy
for classification of mass and normal tissue was evaluated as
the area under the ROC curve, Az.

The detection performance of the bilateral CAD system
was assessed by free response ROC �FROC� analysis. A
FROC curve shows the relationship between the detection
sensitivity and the FP rate as the decision threshold varies.
FROC curves were presented on a per-image and a per-case
basis. For image-based FROC analysis, the mass on each
mammogram was considered an independent true object. For
case-based FROC analysis, the same mass imaged on the
two-view mammograms was considered to be one true object
and detection of the masses on either view or on both views
was considered to be a TP detection.

Two sets of trained parameters were acquired as a result
of the twofold cross-validation training. To estimate the FP
rate on normal mammograms when the trained CAD system
is used in a screening setting, we applied the trained unilat-
eral and bilateral systems to the 260 no-mass mammograms
for independent testing. The number of FP marks produced
by the algorithm was estimated by counting the detected ob-
jects on these normal cases only. The mass sensitivity was
determined by counting only the masses on the correspond-
ing test mass subset. The combination of the sensitivity from
the test mass subset and the FP rate from the normal data set
at the corresponding detection thresholds resulted in a test
FROC curve. The training and testing procedure were per-
formed for each cycle of the twofold cross-validation pro-
cess, thereby generating two test FROC curves. To estimate
the overall performance of the CAD system, an average test
FROC curve is obtained by averaging the FP rates from the
FROC curves of the two mass subsets at the corresponding
sensitivities.

Chakraborty et al.32 proposed a JAFROC method and pro-
vided software to estimate the statistical significance of the
difference between two FROC curves. We employed the JA-
FROC analysis to evaluate the difference in the FROC
curves obtained from the unilateral CAD system and the bi-

lateral CAD system.
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III. RESULTS

A. Bilateral feature analysis

Figures 6 and 7 show examples of detection results ob-
tained from the unilateral system and the bilateral system.
Figure 6 shows a mass that was initially detected as a mass
candidate but was excluded in the false positive reduction
steps and was therefore a FN of the unilateral CAD system.
The bilateral analysis increased the likelihood score of this
mass. It was therefore not excluded in the false positive re-
duction steps and became a TP in the bilateral CAD system.

Figure 7 shows an example of an FP detected by the uni-
lateral CAD system. The FP was excluded in the bilateral
system because it was found to have high symmetry with the
tissue in the contralateral breast, as shown in the ROI in Fig.
7�d�, by the bilateral analysis.

B. Performance evaluation

In the prescreening process, we obtained a large number
of mass candidates on each mammogram. Each mass candi-
date was paired with a corresponding ROI in the contralat-
eral breast. A total of 3127 and 3402 mass candidates were
extracted for training subsets 1 and 2, respectively, which
included 98.5% �134/136� and 99.3% �139/140� of the

FIG. 6. �a� Mammogram containing a mass marked by the rectangular box.
�b� A contralateral mammogram of �a� and the rectangular box is the corre-
sponding ROI of the mass in �a� estimated by the automated regional reg-
istration technique. �c� ROI extracted from �a� containing a mass detected at
the prescreening stage but excluded at the final stage of the unilateral CAD
system. �d� The corresponding ROI in the contralateral breast. Bilateral
analysis of this ROI pair increased the likelihood score of the mass which

was then detected as a TP in the bilateral CAD system.
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masses in the two subsets. The mass candidates in the uni-
lateral mammograms and the ROI pairs from bilateral mam-
mograms in the training subset were used to design the uni-
lateral and bilateral classifiers in each of the twofold cross-
validation cycles. The most effective subset of features from
the available feature pool was selected for each of the train-
ing subsets during the training procedure. For the unilateral
LDA classifier, 20 �11 global and 9 local� and 19 �12 global
and 7 local� texture features were selected from the two in-

FIG. 7. �a� Mammogram and the rectangular ROI containing a mass candi-
date. �b� The contralateral mammogram of �a� and the rectangular box is the
corresponding ROI of the mass candidate in �a�. �c� ROI extracted from �a�
containing normal tissue detected at the prescreening stage and included as
a FP at the final stage of the unilateral CAD system. �d� The corresponding
ROI in the contralateral breast. Bilateral analysis of this ROI pair reduced
the likelihood score of the normal tissue which then became a TN in the
bilateral CAD system.

FIG. 8. �a� Image-based and �b� case-based average test FROC curves from

detection on mammograms in the test subsets with masses.
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dependent training subsets, respectively. For the bilateral
LDA classifier, 24 �11 global texture, 9 local texture, and 4
morphological� and 23 �12 global, 8 local, and 3 morphologi-
cal� features were selected from the two independent training
subsets, respectively. The validation Az values of the LDA
classifier during the leave-one-case-out training were
0.846±0.011 and 0.832±0.009, respectively, for the two
training subsets using the unilateral LDA classifier, and were
0.862±0.015 and 0.859±0.012, respectively, using the bilat-
eral LDA classifier. The classifiers achieved Az values of
0.833±0.015 and 0.831±0.011, respectively, for the two test
subsets using the unilateral LDA classifier, and 0.853±0.013
and 0.849±0.011, respectively, using the bilateral LDA clas-
sifier.

Figure 8 shows the average test FROC curves for the
unilateral and bilateral CAD systems after FP reduction with
the corresponding trained LDA classifiers when the FP rates
were estimated from the test subsets with masses. Figure 9
shows the corresponding results when the FP rates were es-
timated on the set of no-mass mammograms. Table I sum-
marizes the average FP rates estimated with both the mass
and no-mass data sets at several case-based sensitivities.

Because the detection performance of CAD systems on
cancer cases is of prime importance, we analyzed the perfor-
mance of our CAD systems for the subset of cases containing
malignant masses. Figure 10 compares the average test
FROC curves for the unilateral and bilateral CAD systems
on malignant cases only. Figure 11 shows the average test
FROC curves for the unilateral and bilateral CAD systems
with the sensitivities estimated on malignant cases only and
the FP rates estimated on the set of no-mass mammograms.
The bilateral CAD system achieved a case-based sensitivity
of 70%, 80%, and 85% at average FP rates of 0.35, 0.75, and
0.95 FPs/image, respectively, on the test subset of malignant
masses. In comparison to the average FP rates for the unilat-
eral CAD system of 0.58, 1.33, and 1.63 FPs/image, respec-
tively, at the corresponding sensitivities, the FP rates were
reduced by 40%, 44%, and 42% with the bilateral symmetry
information. Table II summarizes the average FP rates esti-

nilateral and the bilateral CAD systems. The FP rates were estimated from
the u
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TABLE I. The average FP reduction rates at case-based sensitivities of 70%, 80%, and 85% for the test subsets
when the FP rates were estimated from the mass and no-mass data sets.

FP rate estimated from mass data set FP rate estimated from no-mass data set

Unilateral CAD Bilateral CAD FP Reduction Unilateral CAD Bilateral CAD FP Reduction

70% 0.70 0.53 24% 0.86 0.53 38%
80% 1.10 0.87 21% 1.32 1.04 21%
85% 1.46 1.15 21% 1.72 1.32 23%
FIG. 9. �a� Image-based and �b� case-based average test FROC curves from the unilateral and the bilateral CAD systems. The FP rates were estimated from
FIG. 10. �a� Image-based and �b� case-based average test FROC curves from the unilateral and bilateral CAD systems for detection on cases with malignant

masses only. The FP rates were estimated from in the same data set.

Medical Physics, Vol. 34, No. 8, August 2007
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mated with both the mass and no-mass data sets for cases
with malignant masses only at several case-based sensitivi-
ties.

The figure-of-merit �FOM� from the output of the JA-
FROC software is summarized in Table III�a� for all cases
and in Table III�b� for malignant cases only. The difference
between the FOMs for the unilateral and the bilateral CAD
systems was statistically significant �p�0.05� for all com-
parisons.

IV. DISCUSSION

Symmetry between breast structures in bilateral pairs of

TABLE II. The average FP reduction rates for cases w
80%, and 85% for the test subsets when the FP rates

FP rate estimated from mass data set

Unilateral CAD Bilateral CAD FP Reduc

70% 0.43 0.33 23%
80% 0.78 0.62 21%
85% 0.94 0.78 17%

TABLE III. Estimation of the statistical significance
unilateral and bilateral CAD systems on test subsets
from the no-mass data set: �a� all cases and �b� mali

�a�
Test s

Unilateral CAD 0
Bilateral CAD 0

p value �0

�b� F
Test subset 1 �

Unilateral CAD 0
Bilateral CAD 0

p value 0

FIG. 11. �a� Image-based and �b� case-based average test FROC curves from
masses only. The FP rates were estimated from the no-mass data set.
mammograms is an important feature used by radiologists
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for mass detection or FP reduction. Similar structures that
appear in both right and left mammograms are more likely to
be normal tissue than abnormal lesions. Our bilateral analy-
sis translates this radiologists’ knowledge to computer vision
techniques so that the CAD system can utilize the symmetry
of breast tissue on bilateral mammograms to improve detec-
tion accuracy. The results of our study show that the bilateral
information is an effective technique for reducing FPs.

The bilateral features are important factors affecting the
performance of the bilateral LDA classifier. In this study, the
bilateral features were derived from features extracted from
each pair of ROIs, i.e., the mass candidate and its corre-

alignant masses at case-based sensitivities of 70%,
e estimated from the mass and no-mass data sets.

FP rate estimated from no-mass data set

Unilateral CAD Bilateral CAD FP Reduction

0.58 0.35 40%
1.33 0.75 44%
1.63 0.95 42%

difference between the FROC performance of the
2. The FP rates of the FROC curves were estimated
cases.

FOM �JAFROC�
1 Test subset 2

0.48
0.51
0.008

�JAFROC�
nant only� Test subset 2 �malignant only�

0.53
0.56
0.003

unilateral and bilateral CAD systems for detection on cases with malignant
ith m
wer

tion
in the
1 and
gnant

ubset

.52

.58

.001

OM
malig

.56

.61

.009
the
sponding ROI, using the maximum-to-minimum ratio strat-
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egy as shown in Eq. �1�. We also investigated if other strat-
egies, including BF�i , j�=MC�i , j� /CR�i , j�, BF�i , j�
= �MC�i , j�−CR�i , j�� /MC�i , j�, and BF�i , j�= �MC�i , j�
−CR�i , j�� / ��MC�i , j�+CR�i , j�� /2�, could improve the per-
formance of the bilateral CAD system. It was found that
these strategies are not as effective as the maximum-to-
minimum ratio. Specifically, among the Az values of all bi-
lateral features, 72% of those from the latter strategies are
lower than those of their corresponding features obtained by
Eq. �1�. The advantage of using bilateral symmetry measures
defined by the maximum-to-minimum ratio can be seen by
considering the following example: assuming two ROI pairs
that are highly asymmetric, �MC1, CR1� and �MC2, CR2�, in
which MC1�CR1 and MC2�CR2, their bilateral features
derived as the maximum-to-minimum ratio will both be
greater than 1. However, the bilateral features obtained from
BF�i , j�=MC�i , j� /CR�i , j� will be greater than 1 for �MC1,
CR1� but smaller than 1 for �MC2, CR2�. The bilateral mea-
sures obtained from BF�i , j�= �MC�i , j�−CR�i , j�� /
MC�i , j� or BF�i , j�= �MC�i , j�−CR�i , j�� / ��MC�i , j�
+CR�i , j�� /2� will be positive for �MC1, CR1� but negative
for �MC2, CR2�. The bilateral feature defined in Eq. �1�
therefore describes the asymmetry between the ROI pairs,
regardless which ROI has a larger feature value, whereas the
other three bilateral features do not consistently provide fea-
ture values in the same direction. The maximum-to-
minimum ratio approach can thus achieve better performance
than the other three strategies.

The corresponding ROI registration is an important pro-
cedure in the bilateral analysis. The two breasts of a given
patient are not perfectly symmetrical and other factors such
as positioning and compression further introduce variability
in the symmetry. We investigated the effect of variability in
the registered ROI locations on bilateral analysis. For this
purpose, the prescreening step of our unilateral CAD system
was first applied to the contralateral mammogram to locate
the mass candidates. For a given ROI predicted by the reg-
istration method on the contralateral mammogram, its loca-
tion was compared to the ROI locations of these mass can-
didates by evaluating an overlap ratio, defined as the
intersection between the predicted ROI and a mass candidate
ROI relative to the area of the smaller ROIs. If the overlap
ratio of the predicted ROI with a mass candidate ROI was
greater than a chosen threshold, the location of the predicted
ROI would be changed to the location of the mass candidate
ROI. If the predicted ROI overlapped with more than one
mass candidate ROIs, the mass candidate ROI having the
largest overlap ratio that exceeded the threshold would be
used. We evaluated the effects of this ROI location adjust-
ment for a range of thresholds. It was found that when the
overlap ratio threshold was chosen to be about 0.7–0.9, the
performance of the bilateral CAD system would have a small
but insignificant improvement compared to the bilateral
CAD system without the ROI adjustment process. When the
overlap ratio threshold was smaller than 0.5, the performance

of the bilateral CAD system was degraded. This study indi-
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cated that small variability of the predicted ROI location on
the contralateral mammogram does not have a strong effect
on the performance of the bilateral analysis.

Various registration methods have been attempted for reg-
istration of mammograms of the same breast. For example,
the warping approach proposed by Sallam et al.33 and the
multiple-control-point approach proposed by Vujovic et al.34

Those approaches depended on the identification of corre-
sponding control points. However, there are few, if any, in-
variant landmarks on mammograms that can be identified
automatically because the breast is composed of soft tissue.
The projected image of the breast tissue often changes even
when the same breast is compressed two different times. It is
even more variable between a breast and its contralateral
breast. Commonly used rigid or nonrigid registration meth-
ods will not be appropriate for this application. We therefore
developed the regional registration method for correlation of
ROIs on mammograms. Our regional registration method
uses the nipple and the distance between the nipple and the
ROI center to be the relatively invariant information. The
lesion in the target breast is estimated to be located within a
band of tissue centered along the arc traced using the nipple-
to-lesion distance as the radius and with the origin at the
nipple. This method emulates a technique used by many ra-
diologists in identifying corresponding lesions in two-view
mammograms or current and prior mammograms.
van Engeland et al.35 compared methods for mammogram
registration based on breast alignment and linear and nonlin-
ear warping. They concluded that linear warping using mu-
tual information performed better than the other methods. We
also performed a study comparing our regional registration
method to correlation or mutual information based linear and
nonlinear warping methods using a data set of 390 current
and prior mammogram pairs.36 Our results showed that the
regional registration method outperformed the warping ap-
proaches in identifying corresponding lesions on the mam-
mogram pairs. The localization of symmetric ROIs on the
bilateral breasts is similar to the problem of registering ROIs
on current and prior mammograms. We therefore adapted the
regional registration method to the bilateral analysis in this
study.

To implement the bilateral analysis in a practical CAD
system, the nipple locations have to be detected automati-
cally. We have previously developed a nipple detection algo-
rithm to determine the nipple location on a mammogram.
The algorithm could detect the nipple locations within 1 cm
of the manually identified locations in about 70% of the im-
ages in the data set used in this study. A large deviation of the
nipple location from the true location may affect the regional
registration technique in locating the symmetric ROI on the
contralateral mammogram, which in turn may degrade the
performance of the bilateral analysis of tissue symmetry. We
therefore used the manually identified nipple locations in this
study in order to develop the bilateral classifier without the
influence of other confounding factors. Further work is un-
derway to improve the nipple detection algorithm and to in-
vestigate the effect of nipple detection accuracy on the per-

formance of the bilateral system.
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The inward nipple projection is often a result of position-
ing and compression problems so that the nipple is not pro-
jected in profile. Since there is not enough information from
the two-dimensional projected mammograms to correct for
the deformation of the breast, we designed a simple, ad hoc
correction method to allow the arc drawn using the nipple-
to-mass distance as the radius to intersect the breast bound-
ary. In these cases, the breast image on the bilateral mammo-
gram often does not have a similar positioning problem and
the difference in the compression of the two breasts may
cause large uncertainty in the registration regardless of the
correction method. For cases in which both breasts actually
have inward nipples and the breast images are similar, our
correction method will not cause additional errors because
similar correction will be applied to the bilateral mammo-
grams and symmetric ROIs will be identified on the mam-
mograms.

Our motivation of this study is to reduce the FPs of a
CAD system for mass detection. A CAD detection system is
generally intended for use in screening mammography. At
the screening stage, all lesions of concern should be pointed
out to radiologists so that the radiologists can judge whether
a recall is warranted. If a detection system is trained to mark
only the malignant lesions, it may be attempting to play the
role of a triage system �alerting radiologists to work up only
“malignant” cases� rather than that of a second reader. Fur-
thermore, since computerized lesion detection or character-
ization on mammograms is not 100% sensitive, it will be
confusing to the radiologists whether an unmarked suspi-
cious lesion is missed or it is considered benign by the com-
puter. We believe that computer-aided diagnosis �CADx�
may be used in different ways in conjunction with a CAD
detection system. For example, the likelihood of malignancy
may be estimated by the CADx system and displayed for
every detected lesion, and/or a CADx system may be used
during diagnostic workup. Either way the CAD system will
first alert radiologists to all masses, leaving the assessment of
malignancy or benignity to a second stage. We therefore in-
cluded both malignant and benign masses in the training sets
to train the system to detect all masses.

V. CONCLUSIONS

We developed a FP reduction method to improve comput-
erized mass detection on mammograms based on analysis of
bilateral information. It was found that the false positives can
be reduced by training a new classifier for bilateral features
and combining its output score with the unilateral classifier
score. The bilateral CAD system achieved a case-based sen-
sitivity of 70%, 80%, and 85% for detection of malignant
masses at average FP rates of 0.35, 0.75, and 0.95 FPs/
image, respectively, on the test data set. In comparison to the
average FP rates for the unilateral CAD system of 0.58, 1.33,
and 1.63 FPs/image, respectively, at the corresponding sen-
sitivities, the FP rates were reduced by 40%, 44%, and 42%
with the bilateral symmetry information. The improvement
in the overall detection accuracy is statistically significant

�p�0.05� by JAFROC analysis. Our results demonstrate that
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the bilateral analysis can differentiate the similarity and dis-
similarity between tissues at corresponding locations in the
bilateral views and is useful for improving the performance
of a unilateral CAD system by further reducing the FPs.
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ABSTRACT 

Purpose: To develop a computer-aided detection (CAD) system that combined a dual system 40 

approach with a two-view fusion method to improve the accuracy of mass detection on 

mammograms.  

Methods: We previously developed a dual CAD system that merged the decision from two mass 

detection systems in parallel, one trained with average masses and another trained with subtle 

masses, to improve sensitivity without excessively increasing false-positives (FPs). In this study, 45 

we further designed a two-view fusion method to combine the information from different 

mammographic views. Mass candidates detected independently by the dual system on the two-

view mammograms were first identified as potential pairs based on a regional registration 

technique. A similarity measure was designed to differentiate TP-TP pairs from other pairs (TP-

FP and FP-FP pairs) using paired morphological features, Hessian feature, and texture features.  50 

A two-view fusion score for each object was generated by weighting the similarity measure with 

the cross correlation measure of the object pair.  Finally, a linear discriminant analysis (LDA) 

classifier was trained to combine the mass likelihood score of the object from the single-view 

dual system and the two-view fusion score for classification of masses and FPs. A total of 2332 

mammograms from 735 subjects including 800 normal mammograms from 200 normal subjects 55 

were collected with Institutional Review Board (IRB) approval.  

Results: When the single-view CAD system that was trained with average masses only were 

applied to the test sets, the average case-based sensitivities were 50.6% and 63.6% for average 

masses on current mammograms and 22.6% and 36.2% for subtle masses on prior mammograms 

at 0.5 and 1 FPs/image, respectively. With the new two-view dual-system approach, the average 60 

case-based sensitivities were improved to 67.4% and 83.7% for average masses and 44.8% and 
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57.0% for subtle masses at the same FP rates.  

Conclusions: The improvement with the proposed method was found to be statistically 

significant (p<0.0001) by JAFROC analysis.   

 65 

Key words: computer-aided detection, breast mass, false positive reduction
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I.  INTRODUCTION 

In screening mammography, two mammographic views, cranio-caudal (CC) and 

mediolateral oblique (MLO) views, are routinely performed for each breast.  During 

mammographic interpretation, the radiologist combines the information from the two views and 70 

evaluates the changes from available prior examinations to confirm true positives (TPs) and to 

reduce false positives (FPs).  It has been reported that screening mammography using two views 

per breast rather than one view can increase cancer detection sensitivity while decreasing the 

recall rate 1,2.    Two-view screening mammography has become the most common and standard 

method for breast cancer screening in developed countries. 75 

Investigators have attempted to implement multiple image techniques in CAD systems to 

improve the accuracy of lesion analysis on mammograms.  Kita et al.3 developed a method to 

find correspondences between CC and MLO views of the same breast.  Their method was based 

on modeling the deformation of the breast caused by compression in different views.  For a data 

set of 37 lesions, their method could predict the location in the second view with an average 80 

minimum distance of 6.78±5.85 mm between the correct position and an epipolar line3.  

Paguerault et al.4 investigated a two-view fusion scheme to improve the performance of a CAD 

system for mass detection.  In their preliminary study, the computer-detected object pairs in two 

views were first identified by using the distance between the nipple and the detected objects.5 A 

trained correspondence classifier was then used to differentiate the TP-TP pairs from other pairs 85 

using extracted image features.  Finally, a fusion scheme that combined ranking and averaging of 

the prescreening and correspondence scores was used to estimate a final mass score for each 

prescreened object.  Using 169 pairs of mammograms, they found that the two-view fusion 

system achieved a significant improvement compared to their single-view CAD system.   



 5

In a recent study, Engeland et al. 6 investigated a method in which a two-view classifier 90 

was trained with both single-view and two-view features to classify the TP from normal 

structures instead of training a classifier to differentiate the object pairs.  They evaluated the 

method using 948 cases and found that the method mainly improved the image-based FROC 

curve in the high specificity range.  However, no improvement was found in the case-based 

FROC curve and they also pointed out that their method may be less relevant when a CAD 95 

system is merely used to prompt regions at a high false positive rate.  Sahiner et al.7 investigated 

the use of joint two-view information to improve computerized microcalcification detection.  

The two-view fusion method was trained and tested on a total of 486 paired mammograms.  The 

improvement in detection with their method was found to be statistically significant for both 

malignant and benign clusters.  Zheng et al 8 proposed a two-view CAD system for masses 100 

which aimed to reduce the FP rate on a given sensitivity level.  It was found that at a 74.4% case-

based sensitivity, their two-view approach reduced the FP rate by 23.7%.  Qian et al 9 designed a 

method for fusing detection results and image features from two views. On a data set of 200 

normal mammograms and 200 mammograms containing small (<10 mm) masses, they obtained 

a significantly improved detection performance when they used their two-view mammogram 105 

analysis method.  Recently, Velikova et al.10 proposed a Bayesian network framework that used 

the dependences between MLO and CC views to obtain a single measure for estimating whether 

the mammographic view, the breast, and the case contains a cancerous lesion.  With the use of 

the Bayesian network, they obtained a statistically significant improvement compared to single-

view analysis for estimating whether the view contains a malignant mass.  Furthermore, when 110 

the view-based results were combined using logistic regression to estimate whether the breast or 

the case contains a malignant mass, the improvement was again statistically significant. 
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The detection of masses on mammograms is a challenging task because the overlapping 

fibroglandular tissue may mimick a mass or obscures the lesion.  Although researchers have 

devoted extensive efforts to the development of CAD systems for mass detection, the 115 

performances of current CAD systems are far from ideal.  We have been developing various new 

techniques to improve the accuracy of mass detection11,12.  In our previous study, we proposed a 

dual CAD system approach that combined two mass detection systems in parallel, one was 

trained with masses of average subtlety and the other with subtle masses.  The dual system 

approach achieved significant improvement in the detection of both average and subtle masses 120 

compared to the conventional single system approach13.  We have also demonstrated the 

feasibility of a new two-view analysis method for fusion of information from different 

mammographic views14.  In this study, our purpose is to further improve the two-view fusion 

method and to develop a CAD system which combines the dual system approach with the two-

view approach. The effectiveness of the new two-view dual CAD system is evaluated with a 125 

relatively large data set.   

 

II. MATERIALS AND METHODS 

2.1 Image Data Sets 

All mammograms in this study were collected retrospectively from patient files of the 130 

Department of Radiology at the University of Michigan with Institutional Review Board (IRB) 

approval.  The mammograms were digitized with a LUMISYS 85 laser film scanner with a pixel 

size of 50µm x 50 µm and 4096 gray levels.  The full resolution mammograms were first 

smoothed with 2x2 box filter and subsampled by a factor of 2, resulting in 100µm x 100µm 
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images.  The images at a pixel size of 100µm x 100µm were used as the input to the CAD 135 

system. 

Two independent data sets of mammograms were collected for this study: a mass set with 

biopsy-proven malignant or benign masses and a normal set containing bilateral mammograms.  

The mass set contained 535 cases with 535 biopsy proven masses in which 345 cases included 

only current mammograms and 190 cases included both the current and the prior mammograms.  140 

233 of the masses are biopsy proven to be malignant and 302 to be benign.  Each case contained 

two mammographic views (CC view and MLO view or the lateral view).  The total number of 

mammograms in the mass set is 1532 including 1070 current mammograms and 462 prior 

mammograms in which 35 cases have two prior exams and 3 cases have three prior exams.  The 

true location of each mass was identified independently on each mammographic view by an 145 

experienced MQSA-approved radiologist.  The masses on the current mammograms are referred 

to as “average” and the masses on prior exams are referred to as “subtle” because many of those 

may not show a well-perceived mass even on retrospective review.  The normal data set 

contained 800 mammograms from 200 patients; each case included the CC view and MLO 

view of both breasts.  The normal data set was only used for estimating the FP rate during 150 

testing.  Figures 1 and 2 show the histograms of mass size and visibility, respectively, for the 

mass set.   

2.2 Methods 

Figure 3 shows a schematic of our dual CAD system with two-view analysis.  The two-

view dual system approach is described in detail below. 155 

A. Dual CAD System Approach 
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An important purpose of a CAD system is to serve as a second reader to alert radiologists 

to subtle cancers that may be overlooked.  Since the lesions identified on prior mammograms 

upon retrospective review represent difficult cases that are more likely to be overlooked by 

radiologists if similar lesions occur on screening mammograms, it is important to improve the 160 

sensitivity of the CAD system in detecting these lesions.  On the other hand, when a CAD 

system is applied to a new mammogram in clinical practice, it has to detect breast lesions of all 

degrees of subtlety effectively.  However, it is difficult to train a single CAD system to provide 

optimal detection for all lesions over the entire spectrum of subtlety because the classifiers have 

to make compromises to accommodate lesions of a wide range of characteristics. 165 

We have developed a dual system approach and demonstrated that it could improve the 

overall performance of our CAD system 13.  Briefly, the dual system is composed of two single 

CAD systems in parallel.  The two systems have the same architecture that includes four 

processing steps: (1) pre-screening of mass candidates, (2) segmentation of suspicious objects, 

(3) feature extraction and analysis, and (4) FP reduction by classification of normal tissue 170 

structures and masses. They were optimized separately by using two different training sets, one 

contained current mammograms with “average” masses and the other prior mammograms with 

“subtle” masses.  The two data sets did not need to come from the same subjects.  After the two 

single systems were trained separately, they were trained together with a single training set for 

the dual system information fusion step using an artificial neural network.  For an input unknown 175 

mammogram, the two systems are applied in parallel and each system estimates a mass 

likelihood score for every detected object, the trained artificial neural network merges the mass 

likelihood scores of the two single CAD systems for a given object to differentiate true masses 

from FPs.  The details can be found in the literature13. 
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The single-view dual system, described above, constitutes the first stage of the new two-180 

view dual system in the current study. To perform the two-view analysis, a threshold was chosen 

to retain a small number of the most suspicious objects per mammographic view as input mass 

candidates to the two-view fusion stage, described next. 

B. Two-view Information Fusion 

The mass candidates on one view will be paired with mass candidates on the other view 185 

based on a regional registration method using geometric criteria.  The paired objects will 

undergo two-view similarity analysis to differentiate TP and FP pairs.  The two-view analysis is 

based on two assumptions: (1) the likelihood of detecting a true mass on both views is higher 

than that of detecting the same FPs on both views, and (2) the corresponding true masses (TP-TP 

pair) on two different mammographic views will exhibit higher similarity than that of FP pairs 190 

(TP-FP pairs and FP-FP pairs) in terms of morphological features, texture features, and cross 

correlation. 

 The key process of our two-view CAD system is the information fusion in which the 

suspicious objects on different mammographic views are paired together and a unique fusion 

score is generated for each individual object.  Our two-view information fusion scheme consists 195 

of four steps: (1) regional registration by using geometric information, (2) estimation of image 

similarity measure between paired objects using cross correlation, (3) estimation of feature 

similarity measure by designing a classifier for differentiation of TP-TP pairs from other pairs, 

and (4) generation of two-view fusion score.  Figure 3 shows the block diagram of the two-view 

information fusion process for suspicious objects on the CC and MLO views of the same breast.  200 

Each step is described below in detail. 

B.1 Regional registration 
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Because of the compression of the highly deformable breast and the lack of invariant 

landmarks in most cases, it is virtually impossible to pinpoint the corresponding locations on 

different views.  We previously developed a regional registration method for locating the 205 

approximate locations of corresponding objects on mammograms acquired at different views 4.  

From the geometry of the mammographic image acquisition, it is known that an object seen on 

the CC view can appear only in a limited region in the MLO view, and vice versa.  Radiologists 

at our institution routinely use the nipple-to-object distance (NOD) to estimate the 

correspondence between objects seen on different views of the same breast.  We emulate the 210 

radiologists’ technique and use the NOD as the geometric matching criterion for initial 

registration of potential pairs.   

The regional registration is performed in a polar coordinate system the origin of which is 

located at the nipple location.  Figure 4 illustrates the process of our regional registration method 

for a suspicious object on CC view.  Using the distance NOD=Rc from the nipple Nc to the 215 

center OC1 of the object on CC view, an annular region that is bounded by two arcs of radii 

Rc±∆R is defined on MLO view with the nipple Nm as the center.  The radial width of the 

annular region 2∆R was estimated with a large data set to be ±3 cm in our previous study 5.   Any 

suspicious objects on MLO view that fall within the annular region is paired with the object OC1 

on the CC view.  In this example, Om1 and Om2 are paired with OC1.  After the regional 220 

registration process is performed for all suspicious objects detected on the CC view, a number of 

object pairs that include true mass pairs (TP-TP pairs) and false pairs (FP-TP, TP-FP and FP-FP 

pairs) are generated.  

We developed an automated nipple detection method previously15 but it did not detect the 

nipple location correctly in all mammograms.  To evaluate the feasibility of the two view 225 
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analysis method independent of the nipple detection errors, we used manually identified nipple 

locations in this study. 

B.2 Cross correlation measure 

 In this step, a template matching approach is used to measure the similarity of the two 

objects in order to distinguish the truly matched object pairs from the incorrect object pairs.  230 

Cross correlation is a popular template matching method.  A previous study from our laboratory 

found that cross correlation was superior to 11 other similarity measures for matching 

corresponding masses on serial mammograms 16.  In this study, we therefore use cross correlation 

as the similarity measure to match the same mass appearing on different views.  Assume that a 

mass candidate on the CC view has been paired with several detected objects in the annular 235 

region on the MLO view.  For a given object pair, the suspicious regions on CC and MLO views 

are denoted as cI  and mI , respectively, where the region cI  is a box enclosing the mass 

candidate detected by the dual CAD system on the CC view and the size of which is determined 

by the segmentation of the object on this view.  The region size is thus varied for each of the 

candidate object.  Because the detected objects may not be centered at the bounding box, a 2 mm 240 

× 2 mm search region is defined with its center at the central location of the paired object on the 

MLO view.  The center of the reference region cI  is placed within the search region and moved 

one pixel at a time over the entire search region.  The cross correlation (r) between cI  and mI , 

where mI  is a region with the same size as cI  and centered at each location on the MLO view, is 

calculated as shown in Eq. (1):  245 
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where x

iI  denotes the ith pixel in the region xI  (x=c, m), n is the number of pixels in the 
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The cross correlation measure is defined as the maximum r value among all locations within the 

search region. 

B.3 Two-view similarity classification  

We assumed that the features of the same mass on different views will show more similar 

properties than those of false pairs so that true mass pairs (TP-TP pairs) can be distinguished 255 

from false pairs by performing feature classification in the combined space of similarity features.   

Three groups of features, morphological features, Hessian features and texture features 

are extracted from each object.  Similarity features are derived as the absolute difference and the 

mean of the corresponding features of each object pair. These similarity features, in combination 

with the geometric similarity, i.e., the difference in NOD between the paired objects, formed the 260 

feature space for classification of true pairs from false pairs.  An LDA classifier was trained to 

estimate a two-view similarity score for each object pair as detailed in Section D below. 

A total of 13 morphological features are extracted as the descriptors of the segmented 

mass shape.  The morphological feature descriptors include the area in terms of the number of 

pixels in the object, circularity, contrast, convexity, Fourier descriptor, normalized radial length 265 

(NRL) mean, NRL area ratio, NRL entropy, NRL standard deviation, NRL zero crossing count, 

perimeter, perimeter-to-area ratio and rectangularity.  The detailed definitions were described in 

our previous study17.   
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Hessian features are derived from the eigenvalues of Hessian matrices in the region of 

interest (ROI) containing a suspicious object in order to distinguish circular objects from other 270 

objects.  The Hessian matrix for a 2D image f(x,y) is defined as  
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variable sizes and also reduce the noise, f(x,y) is convolved with multiscale Gaussian filters 

having a range of standard deviations ( sδ  = 4mm to 10mm) before calculating the Hessian 275 

matrices.  We designed a response function for mass enhancement at a location (x,y) and a given 

scale as  
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where 1λ  and 2λ  are the eigenvalues of Eq. (4) with 21 λλ ≥  at the scale with Gaussian filter 

sδ .  The Hessian feature at a location (x,y) is defined as the maximum value of the response at 280 

that location among all scales.  Three Hessian features, the Hessian feature at the center location 

of the ROI (H1), the maximum Hessian feature within the ROI (H2), and the difference between 

H1 and H2, are calculated for each object. 

The texture features are described by the run length statistics (RLS) as follows.  The 

rubber-band straightening transform (RBST) is applied to each object.  A band of 60-pixel-wide 285 

region around the object margin is transformed to a rectangular image.  A gradient magnitude 

image of the transformed rectangular object margin is derived from Sobel filtering.  Five RLS 
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texture features - short runs emphasis, long runs emphasis, gray level nonuniformity, run length 

nonuniformity and run percentage - are extracted from the gradient image in both the horizontal 

and vertical directions, resulting in a total of 10 RLS texture features.  Detailed definition of the 290 

RBST and the RLS texture features for mammographic masses can be found in the literature 18. 

B.4 Generation of two-view fusion score 

 Since the correspondence of the location of an object projected on different views cannot 

be determined accurately, several situations will occur.  An object on one view may pair with a 

single object, with multiple objects, or with no object, depending on the number of objects within 295 

the annular region on the second view defined for the given object.  Each object pair will obtain 

a similarity score after the LDA classification.  We have designed a fusion method to assign a 

unique score for the suspicious object on the first view from the similarity analysis.  The 

similarity LDA score of the object pair is first weighted by (i.e., multiplied with) the cross 

correlation measure of the pair.  The weighted LDA score is then used as the fusion score for the 300 

object if there is only a single object pair.  For an object that was paired with multiple objects, 

the maximum weighted LDA score among all object pairs is chosen as the fusion score for the 

object.  For an object without object pairs, the fusion score is set to be -2.0 as penalty.  The value 

of -2 was chosen because it was slightly smaller than the minimum fusion score obtained in the 

training set.   305 

C. Two-view system classifier 

During this final stage, we have designed a third LDA classifier with two input features, 

the mass likelihood score from the single-view dual system detection stage and the fusion score 

from the two-view analysis, to distinguish the mass from normal tissue on each view.  The same 

two-view fusion process is applied to the mass candidates on each view so that each view will 310 
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have a set of detected objects with individual scores at the output of this two-view system LDA 

classifier.  The classifier training and testing processes are described below. 

D. Training and testing 

To train and test the proposed computerized methods, we randomly separated the mass 

data sets by case into two approximately equal-size independent subsets.  Two-fold cross 315 

validation was used for training and testing the algorithms.  In each cross-validation cycle, we 

used the training subset for that cycle to select the optimal feature set and train the parameters of 

the classifiers for the single-view dual system, the two-view similarity analysis, and the two-

view dual system.  For each classifier, the classification accuracy for the training subset was 

optimized in terms of the area under the ROC curve, Az.  The single-system LDA classifiers 320 

would be trained to combine the multi-dimensional features into the mass likelihood score for 

each object from the single-view system detection stage, and a neural network classifier was 

trained to merge the single system scores into a dual system score.  The two-view fusion LDA 

classifier would be trained to combine the multi-dimensional similarity features into a similarity 

measure for the paired objects. The two-view dual system LDA classifier would be trained to 325 

differentiate TPs from FPs.   

The LDA classifiers for the single-systems and the two-view similarity analysis were 

trained with feature selection.  Our procedures for feature selection and classifier design have 

been described in detail elsewhere11,19,20.  Briefly, feature selection with stepwise LDA21 and 

simplex optimization were used to select the best feature subset and reduce the dimensionality of 330 

the feature space. The best combination of the stepwise feature selection parameters, including 

the threshold values for feature entry, feature removal, and tolerance of feature correlation, was 

first chosen by using a leave-one-case-out resampling method and a simplex optimization 
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procedure within the training subset.  The Az from the leave-one-case-out testing was used as the 

figure-of-merit to guide the search for the maximum in the parameter space. Using the best set of 335 

parameters and the training subset alone, a final stepwise feature selection was then performed to 

select a set of features and the weights of the LDA were estimated.  

Once the training with one mass subset was completed, the parameters were fixed and 

applied to the cross-validation test subset.  The entire training and testing processes were 

repeated for the other cross-validation cycle in which the training and test subsets were switched.  340 

The set of normal mammograms was not used during training. The trained system from each 

cycle was applied to the normal set to estimate its FP rate in screening mammograms. 

E. Performance analysis 

The detection performance of the two-view dual CAD system was assessed by free 

response ROC (FROC) analysis.  An FROC curve was obtained by plotting the mass detection 345 

sensitivity as a function of FP marks per image at the corresponding decision threshold.  The 

mass detection sensitivity was determined by the detected masses on the test mass subset 

whereas the number of FP marks produced by the CAD system was determined by the detected 

objects on the normal cases only.  FROC curves were presented on a per-mammogram and a per-

case basis.  For image-based FROC analysis, the mass on each mammogram was considered an 350 

independent true object.  For case-based FROC analysis, the same mass imaged on the two-view 

mammograms was considered to be one true object and detection of either mass or both masses 

on the two views was considered to be a TP detection.  Since we used two-fold cross validation 

method for training and testing, we obtained two test FROC curves, one for each test subset, for 

each of the conditions (e.g., single-view approach or two-view approach).  In order to compare 355 

the performance of the single-view and the two-view CAD systems, we applied the jackknife 
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free-response ROC (JAFROC) method developed by Chakraborty et al.22 to each pair of the 

image-based FROC curves obtained with the two systems for the same test subset. To summarize 

the results for comparison, an average test FROC curve was derived by averaging the FP rates at 

the same sensitivity along the FROC curves of the two test subsets for each condition.   360 

 

III.  RESULTS  
3.1 Single-view dual CAD system 

During the first step of our two-view analysis, our previously developed dual CAD 

system 13 was used as the single-view system to detect mass candidates as input to the later 365 

stages.  We experimentally chose a criterion of using a maximum of 5 most suspicious mass 

candidates per image from the single-view detection stage which is a compromise between high 

sensitivity to retain masses on both views to be paired and the FP rate not being excessively high. 

With this criterion, the image-based and case-based sensitivities on the current mass set were 

88.6% and 95.4%, respectively, while the corresponding sensitivities for the prior mass set were 370 

71.3% and 80.7%, respectively.   

3.2 Regional registration 

In this study, we used the NOD to register the mass candidates identified by the single 

view CAD system.  Figure 5 showed the histogram of the NOD difference for the same mass 

which were identified by radiologists on different mammographic views.  In our mass set, there 375 

were a total of 475 average masses on current mammograms and 107 subtle masses on prior 

mammograms which could be seen on both views.  We used 30 mm as the upper bound to match 

the object pairs from the same breast and thus the annular region was chosen to have a radial 

width of ±30 mm.  Under this condition, 9 out of 475 average masses and 1 out of 107 subtle 
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masses were not able to be paired correctly.  During the regional registration process, there were 380 

a total of 8271 object pairs from the two mass subsets which generated an average of 10.8 object 

pairs in the CC and MLO views of a breast and 4152 object pairs from the normal data set with 

an average of 10.4 object pairs in the two views of a breast.  After the regional registration, we 

were able to match only 86.3% (410 of 475) of the mass pairs on current mammograms and 

57.9% (62 of 107) of the mass pairs on prior mammograms.  Of the average masses, 11.8% (56 385 

of 475) of the misses were caused by either one or both of the masses being missed by the dual 

CAD system, and only 1.9% (9 of 475) of the average masses could not be matched because the 

difference in the NODs was larger than 30 mm.  For the subtle masses on prior mammograms, 

the corresponding missed rates were 41.1% (44 of 107) and 0.9% (1 of 107), respectively.   

3.3 Two-view similarity classification 390 

For two-view similarity classification, the number of the selected features from the two 

mass subsets was 6 (Difference of NOD, average of segmented area, average of Hessian output 

and  three average RLS texture features) and 7 (Difference of NOD, average of segmented area, 

average of Hessian output, difference of NRL entropy and three average RLS texture features), 

respectively.  Figure 6 shows the test ROC curves of the two-view similarity classifier on mass 395 

subsets obtained from cross-validation testing with Az values of 0.87±0.01 and 0.88±0.01, 

respectively.   

3.4 Detection performance comparison 

The test FROC curves for average masses on current mammograms are compared in 

Figure 7.  The figures-of-merit (FOM) and the p-values of the difference between pairs of image-400 

based FROC curves under different conditions estimated by JAFROC analysis are tabulated in 

Table 1.  Because of the multiple comparisons, the p-value to achieve statistical significance may 



 19

be reduced to 0.002 (=0.05/24) using the conservative Bonferroni correction23,24.  All paired 

comparisons achieved statistical significance (p<0.002). When the single CAD system was 

applied to the test sets, the average case-based sensitivities were 50.6% and 63.6% at 0.5 and 1.0 405 

FPs/image, respectively, for the average masses on current mammograms.  When the dual CAD 

system was applied to the test sets, the average case-based sensitivities were improved to 62.1% 

and 80.1%, respectively, at the same FP rates for the average masses.  With the proposed two-

view dual system, the average case-based sensitivities were further improved to 67.4% and 

83.7%, respectively, at the same FP rates.   410 

The improvement with the proposed approach was also analyzed for the subtle masses on 

prior mammograms (Figure 8). The FOMs and the p-values of the difference between pairs of 

image-based FROC curves under different conditions estimated by JAFROC analysis for subtle 

masses are tabulated in Table 2.  The dual system and the two-view dual system have 

significantly higher (p<0.002) detection performances than the single system, whereas the 415 

difference between the dual system and the two-view dual system did not achieved statistical 

significance (p>0.002).  When the single CAD system was applied to the test subsets, the 

average case-based sensitivities were 22.6% and 36.2% at 0.5 and 1.0 FPs/image, respectively, 

for the subtle masses on prior mammograms.  When the dual CAD system was applied to the test 

subsets, the average case-based sensitivities were improved to 41.5% and 55.5%, respectively, at 420 

the same FP rates.  With the proposed two-view dual system, the average case-based sensitivities 

for subtle masses were further improved to 44.8% and 57.0%, respectively, at the same FP rates.   

 

 

 425 
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Table 1. Estimation of the statistical significance of the difference between the FROC curves 
for three approaches: the single CAD system, the dual system, and the two-view dual 
system.  The FROC curves with the FP marker rates obtained from the normal data 430 
set were compared.  The pairs of image-based FROC curves were compared with 
JAFROC methodology.  The figure-of-merit from JAFROC analysis for each curve is 
shown. 

FOM (Average Masses) 
All Cases Malignant Cases JAFROC 

Analysis Test 
subset 1 

Test 
subset 2 

Test 
subset 1 

Test 
subset 2 

Single system 0.63 0.63 0.58 0.60 

Dual system 0.69 0.69 0.68 0.69 

P values <0.0001 <0.0001 <0.0001 <0.0001 

Dual system 0.69 0.69 0.68 0.69 
Two-view 

Dual system 0.73 0.72 0.74 0.74 

P values 0.0003 0.001 <0.0001 0.0004 

Single system 0.63 0.63 0.58 0.60 
Two-view 

Dual system 0.73 0.72 0.74 0.74 

P values <0.0001 <0.0001 <0.0001 <0.0001 
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 435 

Table 2. Estimation of the statistical significance of the difference between the FROC curves 
for three approaches: the single CAD system, the dual system, and the two-view dual 
system.  The FROC curves with the FP marker rates obtained from the normal data 
set were compared.  The pairs of image-based FROC curves were compared with 
JAFROC methodology.  The figure-of-merit from JAFROC analysis for each curve is 440 
shown. 

 

FOM (Subtle Masses) 

All Cases Malignant Cases JAFROC 
Analysis Test 

subset 1 
Test 

subset 2 
Test 

subset 1 
Test 

subset 2 

Single system 0.42 0.39 0.37 0.32 

Dual system 0.48 0.46 0.48 0.45 

P values <0.0001 <0.0001 <0.0001 <0.0001 

Dual system 0.48 0.46 0.48 0.45 
Two-view 

Dual system 0.52 0.49 0.52 0.48 

P values 0.111 0.078 0.305 0.219 

Single system 0.42 0.39 0.37 0.32 
Two-view 

Dual system 0.52 0.49 0.52 0.48 

P values <0.0001 <0.0001 <0.0001 <0.0001 
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IV. DISCUSSION AND CONCLUSION 

 We have been developing CAD methods for mass detection on mammograms.  We 

previously designed a dual system approach to improve the overall performance for mass 

detection13.  We also conducted a feasibility study of a new two-view analysis method 14. In this 

study, we combined these two new approaches into a two-view dual CAD system to further 455 

improve its detection accuracy and evaluated its performance in a relatively large data set.  Our 

results indicated that the proposed system could significantly improve the mass detection 

accuracy in comparison to the single CAD system and the dual CAD system for average masses, 

whereas the difference in the performances between the two-view dual system and the single-

view dual system did not achieve statistical significance for subtle masses.   460 

 The improvement achievable with the two-view fusion analysis depends strongly on the 

sensitivity of the single-view detection stage.  If the lesion is missed in the single-view detection, 

the two-view analysis will not improve the sensitivity. We used the dual-system analysis as the 

first step in order to detect as many masses as possible (especially for subtle masses) on single 

views.  Although the improvement by dual-system analysis was substantial in comparison with 465 

the single CAD system, 110 masses (65 of 475 average masses and 45 of 107 subtle masses) still 

could not be matched after regional registration.  The improvement that was achieved by the 

two-view analysis was therefore somewhat limited, especially for the subtle masses.  For average 

masses on current mammograms, when we only analyzed the masses which could form TP-TP 

pairs during regional registration (410 for the average mass set), it was found that the average 470 

case-based sensitivities reached 73.4% and 85.7% at an FP rate of 0.5 and 1.0 per image, 

respectively, with the two-view dual system.  Similarly, for the subtle mass set, the average case-

based sensitivities reached 67.7% and 80.6% (62 for the subtle mass set) at the same FP rates. It 
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can therefore be expected that the improvement by two-view analysis will be greater when the 

single-view detection system can be further improved in the future.   475 

 It may be noted that the improvement in detection sensitivity obtained by two-view 

analysis is different from the apparent increase by case-based FROC analysis.  In case-based 

FROC analysis, a mass is considered to be detected if it is detected either on one view or on two 

views.  With two-view analysis, there is a true improvement in the detection sensitivity, as can 

be observed from the comparison of the image-based FROC curves.  If an additional detected 480 

mass is in the other view of a breast for which the mass is already counted as TP in the case-

based FROC curve for single-view analysis, this additional detection will not contribute to an 

improvement in the case-based FROC curve for two-view analysis.  This is the reason that the 

difference between the two case-based FROC curves for the single-view and two-view analysis 

is smaller than that observed between the two image-based FROC curves.  However, we could 485 

not conduct a statistical comparison for case-based FROC curves due to the fact that the FPs 

from the two views might not be independent and a statistical test is not yet available under this 

situation.  Case-based performance is more generally reported by researchers and CAD system 

manufacturers so that it is more often used for comparing the detection performance between 

CAD systems. One should note that the actual image-based detection performance of two 490 

systems with similar case-based performance can be significantly different. For clinical 

applications, there is a practical advantage to increase the sensitivity by two-view analysis 

because radiologists have greater confidence in a lesion being a TP if the same lesion is detected 

on both views and are less likely to ignore the CAD mark. Dismissing correct CAD marks has 

been observed to be a major cause of some radiologists not gaining the benefit of using CAD.   495 
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In summary, we have developed a two-view dual CAD system to improve computerized 

detection of breast masses on mammograms.  Our results indicate that the proposed CAD system 

significantly improved the detection performance as estimated by the JAFROC analysis.  The 

improvement by two-view analysis is strongly related to the performance of the single-view 

detection system.  The performance of the two-view dual system can potentially be further 500 

improved if the single-view CAD system is improved.  We manually identified the nipple 

locations for the two-view analysis in this study.  We will continue to improve the accuracy of 

our automated nipple detection method15 so that we can fully automate the two-view analysis in 

the future.   
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Figure Captions 
 

Figure 1. Distributions of the mass sizes for 535 average masses identified on the 

current mammograms and 190 subtle masses identified on the prior 

mammograms.  The size for each mass is measured independently as the 

longest diameter on each mammographic view by an experienced MQSA 

radiologist.  The mean sizes are 15.0±7.7 mm for average masses and 

10.9±6.6 mm for subtle masses, respectively. 

Figure 2. Histogram of the mass visibility for 1070 average masses by view identified 

on the current mammograms and 462 subtle masses by view identified on 

the prior mammograms.  The visibility is evaluated on a 10-point rating 

scale with 1 representing the most visible masses and 10 the most difficult 

case relative to the cases seen in their clinical practice.  Each mass on a 

mammogram is rated independently by an experienced MQSA radiologist.  

There are 60 invisible masses on current mammograms and 124 invisible 

masses on prior mammograms.   

Figure 3. Schematic diagram of our dual-system two-view approach for mass 

detection on mammograms.  The system is developed for screening 

mammography in which all masses, regardless of malignant or benign, are 

considered positive. 

Figure 4. Illustration of the process of our regional registration method for locating 

potential object pairs on CC and MLO views. 

Figure 5. Distributions of the nipple-to-object distance (NOD) differences for the 



same mass on different mammographic views identified by radiologists.   

Figure 6. The test ROC curves for classification of TP-TP pairs from other pairs on 

two test mass subsets.  The Az values for the two mass subsets obtained 

from cross-validation testing were 0.87±0.01 and 0.88±0.01, respectively. 

Figure 7. Comparison of the average test FROC curves obtained from averaging the 

FROC curves of the two independent subsets for average masses on current 

mammograms.  The FP rate was estimated from normal mammograms.  (a) 

Image-based FROC curves, (b) Case-based FROC curves. 

Figure 8. Comparison of the average test FROC curves obtained from averaging the 

FROC curves of the two independent subsets for subtle masses on prior 

mammograms.  The FP rate was estimated from normal mammograms.  (a) 

Image-based FROC curves, (b) Case-based FROC curves. 
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Figure 1.  Distributions of the mass sizes for 535 average masses identified on the 
current mammograms and 190 subtle masses identified on the prior 
mammograms.  The size for each mass is measured independently as the 
longest diameter on each mammographic view by an experienced MQSA 
radiologist.  The mean sizes are 15.0±7.7 mm for average masses and 
10.9±6.6 mm for subtle masses, respectively. 
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Figure 2.  Histogram of the mass visibility for 1070 average masses by view 
identified on the current mammograms and 462 subtle masses by view 
identified on the prior mammograms.  The visibility is evaluated on a 10-
point rating scale with 1 representing the most visible masses and 10 the 
most difficult case relative to the cases seen in their clinical practice.  Each 
mass on a mammogram is rated independently by an experienced MQSA 
radiologist.  There are 60 invisible masses on current mammograms and 124 
invisible masses on prior mammograms.   

 

 



Figure 3. Schematic diagram of our dual-system two-view approach for mass detection on 
mammograms.  The system is developed for screening mammography in which all 
masses, regardless of malignant or benign, are considered positive.  
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Figure 4. Illustration of the process of our regional registration method for locating 
potential object pairs on CC and MLO views. 
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Figure 5.  Distributions of the nipple-to-object distance (NOD) differences for the same 

mass on different mammographic views identified by radiologists.   
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Figure 6. The test ROC curves for classification of TP-TP pairs from other pairs on two 

test mass subsets.  The Az values for the two mass subsets obtained from cross-

validation testing were 0.87±0.01 and 0.88±0.01, respectively. 
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(b)  

Figure 7.  Comparison of the average test FROC curves obtained from averaging the 

FROC curves of the two independent subsets for average masses on current 

mammograms.  The FP rate was estimated from normal mammograms.  (a) 

Image-based FROC curves, (b) Case-based FROC curves.  
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(a)  
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(b)  

Figure 8. Comparison of the average test FROC curves obtained from averaging the 

FROC curves of the two independent subsets for subtle masses on prior 

mammograms.  The FP rate was estimated from normal mammograms.  (a) 

Image-based FROC curves, (b) Case-based FROC curves. 

 



Computer aided detection of breast masses on full-field digital 
mammograms: false positive reduction using gradient field analysis 

 
 

Jun Weia, Berkman Sahinera, Lubomir M. Hadjiiskia, Heang-Ping Chana,  
Nicholas Petrickb, Mark A. Helviea, Chuan Zhoua, Zhanyu Gea 

aDepartment of Radiology, University of Michigan, Ann Arbor 
bCenter of Devices and Radiological Health, U. S. Food and Drug Administration, Rockville, MD 

 
 

ABSTRACT 

Several full-field digital mammography (FFDM) systems have been approved for clinical applications.  It is 
important to develop a CAD system that can easily be adapted to images acquired by FFDM systems from different 
manufacturers.  To develop a CAD system that is independent of the FFDM manufacturer’s proprietary preprocessing 
methods, we used the raw FFDM image as input and developed a multi-resolution preprocessing scheme for image 
enhancement.  Our CAD system performed prescreening to identify mass candidates, segmented the suspicious 
structures, extracted morphological and texture features, and then classified masses and normal tissue.  In this study, 
we investigated the use of a two-stage gradient field analysis to identify suspicious masses, and the effectiveness of a 
new gradient field feature extracted from each suspicious object for false positive (FP) reduction.  A data set of 104 
cases with 243 images acquired with a GE FFDM system was collected.  Most cases had two mammographic views, 
except for 12 cases that had three views and 1 case with only one view.  The data set contained 106 masses. The true 
locations of the masses were identified by an experienced radiologist.  Using free-response receiver operating 
characteristic (FROC) analysis, it was found that our CAD system achieved a cased-based sensitivity of 70%, 80%, and 
88% at 0.8, 1.3, and 1.7 FP marks/image, respectively.  The high performance indicated the usefulness of the new 
gradient field analysis method. 
 
Keywords: Computer-aided diagnosis (CAD), Full field digital mammography (FFDM), Gradient field analysis 
 
 

1. INTRODUCTION 

 

Breast cancer is one of the leading causes of death among American women between 40 to 55 years of age1 2-4.  
It has been reported that early diagnosis and treatment significantly can improve the chance of survival for patients with 
breast cancer3-6.  Although mammography is the best available screening tool for detection of breast cancers, studies 
indicate that a substantial fraction of breast cancers that are visible upon retrospective analyses of the images are not 
detected initially7-12.  Computer-aided diagnosis (CAD) is considered to be one of the promising approaches that may 
improve the sensitivity of mammography 13,14.  Computer-aided lesion detection can be used during screening to 
reduce oversight of suspicious lesions that warrant further work-up.  It has been shown that CAD can improve 
radiologists’ detection accuracy significantly 15-17.   

 

Most of mammographic CAD algorithms developed so far are based on digitized mammograms.  In the last 
few years, full-field digital mammography (FFDM) technology has advanced rapidly because of the potential of digital 
imaging to improve breast cancer detection. Several FFDM systems have become commercially available.  We have 
developed a CAD system for the detection of masses on digitized mammograms in our previous study18,19.  We are 
developing a mass detection system for mammograms acquired directly by an FFDM system.  In this study, we are 
investigating the use of gradient field analysis to improve the performance of our mass detection system for FFDMs. 
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2. MATERIALS AND METHODS 
 
2.1 Materials 

 
The data set we used in this study contained 104 cases with 243 images.  All the data were collected with 

institutional review board (IRB) approval.  The raw mammograms in this data set were acquired with a GE FFDM 
system at a pixel size of mm µµ 100100 ×  and 14 bits per pixel.  Most of the cases had two mammographic views, the 

craniocaudal (CC) view and the mediolateral oblique (MLO) view or the lateral view, except for 12 cases that had three 
views and 1 case with only one view.  The total number of the masses in this data set is 106, of which 104 were 
biopsy-proven and 2 were followed up. The true locations of the masses were identified by an experienced breast 
radiologist. 

 
2.2 Methods 
  

Our CAD system consists of five processing steps: 1) preprocessing by using multi-scale enhancement, 2) pre-
screening of mass candidates, 3) identification of suspicious objects, 4) extraction of feature parameters, and 5) 
classification between the normal and the abnormal regions by using rule-base and linear discrimination analysis (LDA) 
classifiers.  The block diagram for the scheme is shown in Figure 1. 
 
 FFDMs generally are pre-processed with proprietary methods before being displayed to readers.  The image 
pre-processing method used depends on the manufacturer of the FFDM system.  In an effort to develop a CAD system 
that is less dependent on specific FFDM systems, the raw digital images are used as input to our system.  A 
preprocessing scheme based on a multi-resolution method20 has been developed for image enhancement.  This scheme 
consists of three steps. First, the boundary of the breast is detected automatically by using Otsu’s method21.  Second, 
the Laplacian pyramid is used to decompose the image into multi-scales.  A nonlinear weight function is designed to 
enhance each high-pass component.  Finally, the Gaussian pyramid is used to reconstruct the multi-scales.  The block 
diagram for the scheme is shown in Figure 2.  An example of an original mammogram and the enhanced mammogram 
are shown in Figs. 3(a) and 3(b), respectively. 
 
 In our previous CAD system developed on digitized screen-film mammograms (SFM), an adaptive density-
weighted contrast enhancement (DWCE) filter18 was developed for prescreening.  Although the DWCE filter using the 
gray level information can identify the suspicious location of masses on mammograms with high sensitivity, the 
prescreening objects often include a large number of enhanced normal breast structures.  In this study, we investigate 
the use of a new method that combines gradient field information and gray level information to detect the mass 
candidates on the FFDMs.  Gradient field information is commonly used in computer vision or other fields to extract 
objects or intensity field distributions.  Kobatake et al22 designed a filter, referred to as an iris filter, to calculate the 
convergence of gradient index around each pixel on SFMs which provided shape information for detection of masses.  
An extension of the iris filter, referred to as an adaptive ring filter, was developed by Wei et al23 for detection of lung 
nodules on chest x-ray images.  In this study, we have developed a two-stage gradient field analysis method which 
does not only use the shape information of masses on mammograms (an extension of the adaptive ring filter) but also 
incorporates the gray level information by using a region growing technique in the second stage to refine the gradient 
field analysis.  
 
 After prescreening, the suspicious objects are identified by using a clustering based region growing method.  
Figures 3(c) and 3(d) show the initial detection locations and the grown objects, respectively.  For each suspicious 
object, eleven morphologic features are extracted and rule-based and linear classifiers are trained to remove the detected 
normal structures that are substantially different from breast masses.  Global and local multiresolution texture 
analysis24,25 are performed in each region of interest by using the spatial gray level dependence matrix.  A new gradient 
field feature is extracted from each suspicious object and added to the feature space for false positive (FP) reduction.  
Finally, LDA classification is used to identify potential breast masses.  Figure 3(e) shows the final detected objects, 
and Figure 3(f) shows the locations of these objects superimposed on the mammogram, respectively.  Further details of 
this algorithm can be found in the literature19.   
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3. RESULTS 
 
We randomly separated the cases in our data set into two independent equal sized data sets: the training data 

set contained 52 cases with 120 images and the test data set contained 52 cases with 123 images, respectively.  Both 
the mass detection system with DWCE filtering and that with the two-stage gradient field analysis were trained with the 
training set, the performance of the two trained systems were compared using the test data set.  Our CAD system with 
the DWCE filter for prescreening of mass candidates achieved a case-based sensitivity of 70% and 80% at 1.4 and 1.7 
FP marks/image, respectively.  When the DWCE filter was replaced by the gradient field analysis for prescreening, the 
FP marks/image was reduced to 1.0 and 1.4 at the sensitivity of 70% and 80%, respectively. After the addition of the 
gradient field feature, the FP was further reduced to 0.8 and 1.3 FP marks/image, respectively, at these sensitivities.  
Alternatively, the new method can achieve a case-based sensitivity of 88% at 1.7 FP marks/image.  Figures 4 and 5 
show the comparison of performance by using image-based FROC and case-based FROC curves, respectively. 
 
 

4. DISCUSSION AND CONCLUSIONS 
 
Several FFDM systems have been approved for clinical applications.  It is important to develop a CAD 

system that can easily be adapted to images acquired by FFDM systems from different manufacturers.  In this work, 
we developed a CAD system that uses the raw FFDMs as the input.  Our previous CAD system which was developed 
on digitized mammograms was adapted to FFDMs by using a new prescreening method that employed gradient field 
analysis and by retraining the processing parameters.  A gradient field feature was extracted for further false positive 
reduction.  The gradient field analysis in combination with the gradient field feature can reduce FPs in mass detection 
on FFDMs.  It was found that our CAD system achieved a cased-based sensitivity of 70%, 80%, and 88% at 0.8, 1.3, 
and 1.7 FP marks/image, respectively.  Further study is underway to improve the CAD system using a larger data set.   
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Figure 1: The block diagram of CAD algorithm for mass detection on FFDMs. 

 
 
 

 
 

Figure 2: The block diagram for preprocessing of raw FFDM images by multiscale enhancement.
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(a) Original image (b) Preprocessed image 

 
(c) Prescreened image 

 
 

   
(d) Identified suspicious objects (e) Detection result (f) Image with detected objects 

 
Figure 3: An example demonstrating the processing steps with our computer-aided mass detection system.  
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Figure 4: Image-based FROC curves. DWCE: prescreening using DWCE filter. GFA: prescreening using gradient field analysis. 

GFA-Feature: prescreening using gradient field analysis and the addition of the gradient field feature for FP reduction.  

 

Number of false-positives per image
0 1 2 3

T
ru

e-
p

o
si

ti
ve

 f
ra

ct
io

n

0.0

0.2

0.4

0.6

0.8

1.0

DWCE
GFA
GFA-Feature 

 
 

Figure 5: Case-based FROC curves. DWCE: prescreening using DWCE filter. GFA: prescreening using gradient field analysis. GFA-
Feature: prescreening using gradient field analysis and the addition of the gradient field feature for FP reduction. 
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ABSTRACT 
 
We have developed a computer-aided detection (CAD) system for breast masses on mammograms. In this 

study, our purpose was to improve the performance of our mass detection system by using a new dual system approach 
which combines a CAD system optimized with ”average” masses with another CAD system optimized with subtle 
masses. The latter system is trained to provide high sensitivity in detecting subtle masses.  For an unknown 
mammogram, the two systems are used in parallel to detect suspicious objects.  A feed-forward backpropagation 
neural network trained to merge the scores of the two linear discriminant analysis (LDA) classifiers from the two 
systems makes the final decision in differentiation of true masses from normal tissue. A data set of 86 patients 
containing 172 mammograms with biopsy-proven masses was partitioned into a training set and an independent test set.  
This data set is referred to as the average data set. A second data set of 214 prior mammograms was used for training 
the second CAD system for detection of subtle masses. When the single CAD system trained on the average data set 
was applied to the test set, the Az for false positive (FP) classification was 0.81 and the FP rates were 2.1, 1.5 and 1.3 
FPs/image at the case-based sensitivities of 95%, 90% and 85%, respectively. With the dual CAD system, the Az was 
0.85 and the FP rates were improved to 1.7, 1.2 and 0.8 FPs/image at the same case-based sensitivities.  Our results 
indicate that the dual CAD system can improve the performance of mass detection on mammograms. 
 
Keywords:  computer-aided detection (CAD), mass detection, dual CAD system 
 
 
 

1. INTRODUCTION 
 

Breast cancer is one of the leading causes of death among American women between 40 to 55 years of age1.  
It has been reported that early diagnosis and treatment can improve significantly the chance of survival for patients with 
breast cancer2-4.  Although mammography is the best available screening tool for detection of breast cancers, studies 
indicate that a substantial fraction of breast cancers that are visible upon retrospective analyses of the images are not 
detected initially5-7.  Computer-aided detection (CAD) is considered to be one of the promising approaches that may 
improve the sensitivity of detecting early breast cancer in screening mammography. It has been shown that CAD can 
increase the cancer detection rate by radiologists both in the laboratory and in clinical practice8-13.   

 

We have been developing CAD systems for detection and characterization of mammographic masses and 
microcalcifications. Detection of masses on mammograms is more challenging than detection of microcalcifications 
because the normal fibroglandular tissue in the breast causes false positives (FPs) by mimicking masses and causes false 
negatives due to overlapping with the lesions.  Therefore, mass detection systems generally have lower sensitivity and 
higher FP rate than microcalcification detection systems.  In this study, we are investigating the effectiveness of a dual 
system approach for improving the performance of mass detection on mammograms. 

 

                                                           
* jvwei@umich.edu, phone: 734-647-8553, CGC B2103, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0904 

Medical Imaging 2005: Image Processing, edited by J. Michael Fitzpatrick,
Joseph M. Reinhardt, Proc. of SPIE Vol. 5747 (SPIE, Bellingham, WA, 2005)
1605-7422/05/$15 · doi: 10.1117/12.595745

9



 2 

2. MATERIALS AND METHODS 
 
2.1 Materials 
 

The data set we used in this study contained 86 cases.  Each case included the current mammograms that were 
obtained before biopsy and the prior mammograms obtained from previous exams.  The prior mammograms were used 
for training the second system because masses on prior mammograms are generally more subtle than those on current 
mammograms.  The subtle mass set does not have to be obtained from the same cases as the average mass set.  The 
current set contained 172 mammograms and the prior set contained 214 mammograms.  All data were collected with 
Institutional Review Board (IRB) approval.  The mammograms in this data set were digitized by a Lumiscan laser 
scanner with a pixel size of mm µµ 100100 ×  and 12 bits per pixel.  All of the current cases had two 

mammographic views: the craniocaudal (CC) view and the mediolateral oblique (MLO) view or the lateral view.  
There were 86 biopsy-proven masses in this data set.  The true locations of the masses were identified by an 
experienced MQSA radiologist. 

 
2.2 Methods 
 
   In order to improve the performance of our CAD system for detection of subtle masses, we developed a new 
dual system approach which combines a system trained with ”average” masses with another system trained with subtle 
masses. When the trained dual system is applied to an unknown mammogram, the two CAD systems are used in parallel 
to detect suspicious objects on a single mammogram.  No prior mammogram is needed.  The additional FPs from the 
use of two systems are reduced by feature classification in an information fusion stage.  Figure 1 shows the block 
diagram for the dual system. 
 

 
 

Figure 1.  The block diagram of the dual CAD system for mass detection on mammograms. 
 
 

Our single CAD system consists of five processing steps: 1) digitization, 2) pre-screening of mass candidates, 
3) identification of suspicious objects, 4) extraction of feature parameters, and 5) classification between the normal and 
the abnormal regions by using rule-based and LDA classifiers.  The block diagram for the single CAD system is 
shown in Figure 2.  Figure 3 shows an example demonstrating the processing steps with our computer-aided mass 
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detection system.  For the pre-screening stage, we have developed a two-stage gradient field analysis method which 
uses not only the shape information of masses on mammograms but also incorporates the gray level information of the 
local object segmented by a region growing technique in the second stage to refine the gradient field analysis14,15.  The 
gradient field analysis was used to determine locations of high convergence of radial gradient in the image.  A region 
of interest (ROI) of 256256×  pixels is then identified with its center placed at each location of high gradient 
convergence.  The object in each ROI is segmented by a region growing method16 in which the location of high 
gradient convergence is used as the starting point.  Figures 3(b) and 3(c) show the initial detection locations and the 
grown objects, respectively.  After region growing, all connected pixels constituting the object are labeled.  Finally, 
the gradient convergence at the center location of the ROI is recalculated within the segmented object.  The objects 
whose new gradient convergence is lower than 80% of the original value are rejected.  After prescreening, the 
suspicious objects are identified by using a clustering-based region growing method.  For each suspicious object, 
eleven morphological features are extracted.  Rule-based and LDA classifiers are trained to remove the detected 
normal structures that are substantially different from breast masses.  Global and local multiresolution texture 
analysis17,18 are performed in each ROI by using the spatial gray level dependence matrices at different pixel spacings 
and angular directions.  In order to obtain the best feature subset and reduce the dimensionality of the feature space to 
design a robust classifier, feature selection with stepwise linear discriminant analysis was applied.  Finally, LDA 
classification is used to identify potential breast masses.  Figure 3(d) shows the final detected objects, and Figure 3(e) 
shows the locations of these objects superimposed on the mammogram. 

 

 
Figure 2.  The block diagram of a single CAD system for mass detection on mammograms. 
 
 
The two single CAD systems were independently trained with the “average” mass set and the subtle mass set, 

respectively.  To merge the information from the two CAD systems, the two LDA discriminant scores from the two 
CAD systems were used to define a new feature space.  A feed-forward backpropagation neural network with 3 hidden 
nodes was then trained using the LDA feature scores of the training sets as input to differentiate true masses from 
normal tissue.  After the dual CAD system was trained, its performance was evaluated on the independent test set and 
compared with that of the single CAD system. 
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(a) Original image (b) Prescreened image 

   
(c) Identified suspicious objects (d) Detection result (e) Image with detected objects 

Figure 3.  An example demonstrating the processing steps with our single CAD system for mass detection.  

 
 

3. RESULTS 
 
We randomly separated the cases in our data set into two independent equal sized data sets, each with 43 cases.  

The training and testing were performed using the cross validation method.  The detection performance of the CAD 
system was assessed by free response receiver operating characteristic (FROC) analysis.  FROC curves were presented 
on a per-mammogram and a per-case basis.  For mammogram-based FROC analysis, the mass on each mammogram 
was considered an independent true object; the sensitivity was thus calculated relative to 86 masses. For case-based 
FROC analysis, the same mass imaged on the two-view mammograms was considered to be one true object and the 
detection of either or both masses on the two views was considered to be a true-positive (TP); the sensitivity was thus 
calculated relative to 43 masses.  The average test FROC curve was obtained from averaging the FP rates at the same 
sensitivity along the two corresponding test FROC curves from the 2-fold cross validation.  When the single CAD 
system trained on the average data set was applied to the test set, the Az for FP classification was 0.81 and the 
FPs/image were 2.1, 1.5 and 1.3 at the case-based sensitivities of 95%, 90% and 85%, respectively.  With the dual 
CAD system, the Az was 0.85 and the FP rates were improved to 1.7, 1.2 and 0.8 FPs/image at the same case-based 
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sensitivities.  Figure 4 and 5 shows the comparison of the test performance of the single and dual CAD systems by 
using image-based and case-based average FROC curves, respectively. 
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Figure 4. Image-based average FROC curves obtained from averaging the corresponding FROC 
curves of the two test subsets. Single: detection by the single CAD system. Dual: 
detection by the dual CAD system. 
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Figure 5. Case-based average FROC curves obtained from averaging the corresponding FROC 
curves of the two test subsets. Single: detection by the single CAD system. Dual: 
detection by the dual CAD system. 
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4. DISCUSSION AND CONCLUSIONS 
 
We previously developed a CAD system for detection of masses on mammograms.  However, we found that 

it is difficult to train a single system to provide optimal detection for all lesions over the entire spectrum of subtlety.  In 
this study, we developed a dual system which combines a system trained with subtle lesions on prior mammograms and 
a system trained with masses detected on current mammograms.  It was found that the dual CAD system could achieve 
a higher accuracy than the single CAD system.  Further study is underway to optimize the fusion scheme in our dual 
system.   
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ABSTRACT 
 
We are developing a two-view information fusion method to improve the performance of our CAD system for 

mass detection.  Mass candidates on each mammogram were first detected with our single-view CAD system.  
Potential object pairs on the two-view mammograms were then identified by using the distance between the object and 
the nipple.  Morphological features, Hessian feature, correlation coefficients between the two paired objects and texture 
features were used as input to train a similarity classifier that estimated a similarity scores for each pair.  Finally, a 
linear discriminant analysis (LDA) classifier was used to fuse the score from the single-view CAD system and the 
similarity score.  A data set of 475 patients containing 972 mammograms with 475 biopsy-proven masses was used to 
train and test the CAD system.  All cases contained the CC view and the MLO or LM view.  We randomly divided the 
data set into two independent sets of 243 cases and 232 cases.  The training and testing were performed using the 2-fold 
cross validation method.  The detection performance of the CAD system was assessed by free response receiver 
operating characteristic (FROC) analysis.  The average test FROC curve was obtained from averaging the FP rates at 
the same sensitivity along the two corresponding test FROC curves from the 2-fold cross validation.  At the case-based 
sensitivities of 90%, 85% and 80% on the test set, the single-view CAD system achieved an FP rate of 2.0, 1.5, and 1.2 
FPs/image, respectively.  With the two-view fusion system, the FP rates were reduced to 1.7, 1.3, and 1.0 FPs/image, 
respectively, at the corresponding sensitivities.  The improvement was found to be statistically significant (p<0.05) by 
the AFROC method.  Our results indicate that the two-view fusion scheme can improve the performance of mass 
detection on mammograms. 
 
Keywords: computer-aided detection, two-view fusion, mass detection, AFROC analysis 
 
 

1. INTRODUCTION 
 

Breast cancer is one of the leading causes of cancer mortality among women1.  There is considerable evidence 
that early diagnosis and treatment significantly improves the chance of survival for patients with breast cancer 2-5.  
Although mammography has a high sensitivity for detection of breast cancers when compared to other imaging 
modalities, studies indicate that radiologists do not detect all carcinomas that are visible upon retrospective analyses of 
the images6-11.  It has been shown that computer-aided detection (CAD) can improve the sensitivity of mammography 
in prospective clinical trials12-15.   CAD is thus a viable cost-effective alternative to double reading by radiologists.   

The mass detection systems to-date generally employed a single-view detection approach using various 
techniques for prescreening of mass candidates and classification of true and false positives16-25.  We have been 
developing CAD systems for detection of mammographic masses on full field digital mammograms (FFDMs)25 and 
screening film mammograms (SFMs)22.  Our previous study23 showed that two-view fusion method can improve the 
performance of a CAD system for mass detection on mammograms.  In this study, our purpose is to improve the 
performance of the two-view information fusion method and to test our method in a relatively larger data set. 

 
 

2. MATERIALS AND METHODS 
 
2.1 Materials 
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All mammograms in this study were collected from patient files in the Department of Radiology at the 
University of Michigan with Institutional Review Board (IRB) approval.  The mammograms were digitized with a 
LUMISYS 85 laser film scanner with a pixel size of 50µm×50µm and 4096 gray levels.  The scanner was calibrated to 
have a linear relationship between gray levels and optical densities (O.D.) from 0.1 to greater than 3 O.D. units.  The 

nominal O.D. range of the scanner is 0–4.  The full resolution mammograms were first smoothed with a 2×2 box filter 

and subsampled by a factor of 2, resulting in images with a pixel size of 100µm×100µm.  These images were used for 
the input of our CAD system.  The data set we used in this study contained 475 cases, of which 464 cases had the two-
view mammograms (the craniocaudal (CC) view and the mediolateral oblique (MLO) view or the lateral view) and 11 
cases had four-view mammograms, resulting in a total of 972 mammograms.  All mammograms were obtained before 
biopsy.  There were 475 biopsy-proven masses in this data set.  

 
 

2.2 Methods 
 
2.2.1 Single-view System Overview 

 

Figure 1.  Block diagram of a single CAD system for mass detection on mammograms. 
 
Our single-view CAD system consists of five processing steps: 1) pre-screening of mass candidates, 2) 

identification of suspicious objects, 3) extraction of morphological and texture features, and 4) classification between the 
normal and the abnormal regions by using rule-based and LDA classifiers.  The block diagram for the single-view CAD 
system is shown in Figure 1.  Figure 2 shows an example demonstrating the processing steps with our computer-aided 
mass detection system.  For the pre-screening stage, we have developed a two-stage gradient field analysis method 
which combines the shape information of masses on mammograms with the gray level information of the local object 
segmented by a region growing technique in the second stage to refine the gradient field analysis.  The gradient field 
analysis is used to determine locations of high convergence of radial gradient in the image.  A region of interest (ROI) 
is then identified with its center placed at each location of high gradient convergence.  The object in each ROI is 
segmented by a region growing method in which the location of high gradient convergence is used as the starting point.  
Figures 2(b) and 2(c) show the initial detection locations and the grown objects, respectively.  After region growing, all 
connected pixels constituting the object are labeled.  Finally, the gradient convergence at the center location of the ROI 
is recalculated within the segmented object.  The objects whose new gradient convergence is lower than 80% of the 
original value are rejected.  After prescreening, the suspicious objects are identified by using a clustering-based region 
growing method.  For each suspicious object, eleven morphological features are extracted.  Rule-based and LDA 
classifiers are trained to remove the detected normal structures that are substantially different from breast masses.  
Global and local multiresolution texture analyses are performed in each ROI by using the spatial gray level dependence 
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(SGLD) matrices at different pixel spacings and angular directions.  In order to obtain the best feature subset and 
reduce the dimensionality of the feature space to design a robust classifier, feature selection with stepwise linear 
discriminant analysis is performed.  Finally, LDA classification is used to identify potential breast masses.  Figure 
2(d) shows the final detected objects, and Figure 2(e) shows the locations of these objects superimposed on the 
mammogram. 

 

 
2.2.2 Two-View Fusion 

 
In order to improve the overall performance of our CAD system for detection of masses, we developed a two-

view fusion technique which combines the information from two mammographic views.   The fusion method used in 
this study is based on the assumption that the corresponding true mass on two different mammographic views will 
exhibit similarities in their geometric, morphological and textural features which are relatively invariant with respect to 
the imaging views.  On the other hand, FPs detected by CAD system are expected to exhibit a lesser degree of 
similarity because they are usually objects formed by different normal tissues.   

For a given object on one view, geometric pairing is first performed using the nipple-to-object distance as the 
average radius of an annular region on the other view within which the detected objects can be paired with the given 

  
(a) Original image (b) Prescreened image 

  

 
(c) Identified suspicious objects (d) Detection result (e) Image with detected objects 

Figure 2.  An example demonstrating the processing steps with our single-view CAD system for mass detection. 
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object.  Manually identified nipple locations are used for the registration in this study.  We are developing an 
automated nipple detection technique26 and the automated method will be used when it reaches high accuracy.  
Similarity measures between each pair of objects are derived from the pairs of individual object features.  The similarity 
features include morphological features, Hessian feature, correlation coefficients between the two paired objects and 
texture features.  A similarity classifier is trained to distinguish between true and false pairs by merging the similarity 
features into a similarity score for each object.  The similarity score and the single-view object score of the object are 
then fused to form a final score for the object.  Our two-view system is summarized in Figure 3. 
 

 
 

Figure 3.  Block diagram of the two-view CAD system for mass detection on mammograms. 
 

 
3. Experimental Results 

 
   We randomly separated the cases in our data set into two independent equal sized data sets: 243 cases with 494 
images and 232 cases with 478 images.  The training and testing were performed using the 2-fold cross validation 
method.  The detection performance of the CAD system was assessed by free response receiver operating characteristic 
(FROC) analysis.  FROC curves were presented on a per-mammogram and a per-case basis.  For mammogram-based 
FROC analysis, the mass on each mammogram was considered an independent true object.  For case-based FROC 
analysis, the same mass imaged on the two-view mammograms was considered to be one true object and the detection of 
either or both masses on the two views was considered to be a true-positive (TP).  To evaluate the overall test 
performance, an average test FROC curve was obtained from averaging the FP rates at the same sensitivity along the two 
corresponding test FROC curves from the 2-fold cross validation.  When the single-view CAD system was applied to 
the test set, the FPs/image were 2.0, 1.5, and 1.2 at the case-based sensitivities of 90%, 85% and 80%, respectively.  
With the two-view CAD system, the FP rates were improved to 1.7, 1.3, and 1.0 FPs/image at the same case-based 
sensitivities.  Figure 4 and 5 shows the comparison of the test performance of the single-view CAD system and the two-
view CAD systems by using image-based and case-based average FROC curves, respectively.  To analyze the 
improvement in the FROC curves statistically, an alternative free-response ROC (AFROC) method27 was employed.  In 
the AFROC method, false-positive images (FPI) instead of FPs per image are counted.  The confidence rating of an FPI 
is determined by the highest confidence FP decision on the image regardless of how many lower confidence FP decisions 
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are made on the same image.  The ROCKIT software developed by Metz et al28 is used to analyze the AFROC data.  
The comparison of the A1 and the p values is summarized in Table 1.   
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Figure 4.   Image-based average FROC curves obtained 

from averaging the corresponding FROC curves of the 
two test subsets. Single-view: detection by the single-
view CAD system. Two-view: detection by the two-
view CAD system. 

 

 
Figure 5.  Case-based average FROC curves obtained 

from averaging the corresponding FROC curves of 
the two test subsets.  Single-view: detection by the 
single-view CAD system.  Two-view: detection by 
the two-view CAD system. 

  
 

Table 1.  Estimation of the statistical significance in the difference between the FROC 
performances of the single-view CAD system and the two-view CAD system.   

 
A1 (AFROC)  

Test Set 1 Test Set 2 
One-view CAD 0.52 0.51 
Two-view CAD 0.55 0.54 

P Value <0.0001 <0.0001 
 

 
4. DISCUSSION AND CONCLUSIONS 

 
In this study, we developed a two-view CAD system to improve the computerized detection of masses on 

mammograms. The two-view CAD system is different from case-based scoring, in which detection of the same mass in 
either the CC view or the MLO view will be counted as a true positive, in that the detected objects in the two views are 
correlated and analyzed for similarity and the likelihood score of a mass detected in both views may be enhanced 
compared with FPs.  Our results indicate that two-view fusion can significantly improve the overall performance of the 
single-view CAD system.  Future work will include automated identification of nipple locations and optimization of the 
fusion scheme in our system.   
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ABSTRACT 
 
In computer-aided detection (CAD) applications, an important step is to design a classifier for the 

differentiation of the abnormal from the normal structures.   We have previously developed a stepwise linear 
discriminant analysis (LDA) method with simplex optimization for this purpose.  In this study, our goal was to 
investigate the performance of a regularized discriminant analysis (RDA) classifier in combination with a feature 
selection method for classification of the masses and normal tissues detected on full field digital mammograms (FFDM).  
The feature selection scheme combined a forward stepwise feature selection process and a backward stepwise feature 
elimination process to obtain the best feature subset.  An RDA classifier and an LDA classifier in combination with this 
new feature selection method were compared to an LDA classifier with stepwise feature selection.  A data set of 130 
patients containing 260 mammograms with 130 biopsy-proven masses was used.  All cases had two mammographic 
views.  The true locations of the masses were identified by experienced radiologists.  To evaluate the performance of 
the classifiers, we randomly divided the data set into two independent sets of approximately equal size for training and 
testing.  The training and testing were performed using the 2-fold cross validation method.  The detection performance 
of the CAD system was assessed by free response receiver operating characteristic (FROC) analysis.  The average test 
FROC curve was obtained by averaging the FP rates at the same sensitivity along the two corresponding test FROC 
curves from the 2-fold cross validation.  At the case-based sensitivities of 90%, 80% and 70% on the test set, our RDA 
classifier with the new feature selection scheme achieved an FP rate of 1.8, 1.1, and 0.6 FPs/image, respectively, 
compared to 2.1, 1.4, and 0.8 FPs/image with stepwise LDA with simplex optimization.  Our results indicate that RDA 
in combination with the sequential forward inclusion-backward elimination feature selection method can improve the 
performance of mass detection on mammograms.  Further work is underway to optimize the feature selection and 
classification scheme and to evaluate if this approach can be generalized to other CAD classification tasks.  
 
Keywords:  computer-aided detection, full field digital mammogram, mass detection, regularized discriminant analysis, 

feature selection 
 
 

1. INTRODUCTION 
 
Breast cancer is the most common cancer among American women1.  Early detection and diagnosis can 

significantly increase the survival rate2-4.  Recent clinical studies have shown that computer-aided detection (CAD) 
systems are helpful for increasing radiologists’ accuracy in detecting breast cancers5-8. 

 
We have been developing CAD systems for detection and characterization of mammographic masses and 

microcalcifications.  Detection of masses on mammograms is more challenging than detection of microcalcifications 
because the normal fibroglandular tissue in the breast causes false positives (FPs) by mimicking masses and causes false 
negatives due to overlapping with the lesions.  Therefore, mass detection systems generally have lower sensitivity and 
higher FP rate than microcalcification detection systems.  We are investigating methods to improve the overall 
performance of our CAD systems. 

 
 False positive (FP) classification is an important step in a CAD system.  The basic approach in two-class 
classification is to assign an unknown sample to one of the two classes on the basis of a multidimensional feature space.  
A number of methods have been proposed in previous studies9-11.  Most of the methods are based on linear discriminant 
analysis (LDA), artificial neural networks, and rule-based classifiers12.  Recently, support vector machines were used to 
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classify the malignant and benign clustered microcalcifications on mammograms13.  In medical imaging application, a 
main problem during the classifier design is the finite sample size available which biases the performance of the trained 
classifier for unknown cases.  In this study, we are investigating the performance of a regularized discriminant analysis 
(RDA) classifier in combination with a feature selection method for classification of the masses and normal tissues 
detected on full field digital mammograms (FFDMs). 

 
 

2. MATERIALS AND METHODS 
 
2.1 Materials 

 
IRB approval was obtained prior to the commencement of this investigation. The images used in this study were 

acquired at the University of Michigan with a GE Senographe 2000D FFDM system before biopsy. The GE system has a 
CsI phosphor/a:Si active matrix flat panel digital detector with a pixel size of mm µµ 100100 ×  and 14 bits per pixel.  A 

data set of 130 cases was used.  All cases had two mammographic views, the craniocaudal (CC) view and the 
mediolateral oblique (MLO) view or the lateral (LM or ML) view.  The data set contained 130 biopsy-proven masses.  
The true locations of the masses were identified by a Mammography Quality Standards Act radiologist.   

 
2.2 Methods 
 
2.2.1 Discriminant Analysis 
  
 Assume that the class distributions are multivariate normal in a two-class classification problem.  Under this 
condition, discriminant analysis models differ essentially by the specific assumptions on the mean vectors and 
covariance matrices of the group conditional densities.  The most commonly used model is linear discriminant analysis 
(LDA) which assumes that the group conditional distributions are multivariate normal distributions with mean vectors 

kµ , where k = 1, 2 is the class index, and equal covariance matrix Σ .  The definition of LDA is given in Eq. (1). 

 

  XY T 1
21 )( −−= Σµµ                                      (1) 

 
where XT=(x1, …, xn) is the feature vector of a sample and n is the dimensionality of the feature space.   If the 
covariance matrices are not equal, one can use quadratic discriminant analysis (QDA), which has a quadratic term for the 
feature vector in its model.  The definition of QDA is described in Eq. (2).  
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The parameters in LDA and QDA are usually unknown and have to be estimated from training samples.  In medical 
imaging applications, the sample size may be very small in comparison with the dimensionality of the feature space.   
A regularization technique for discriminant analysis, referred to as regularized discriminant analysis (RDA)14, makes use 
of a complexity parameter and a shrinkage parameter to design an intermediate classification model between LDA and 
QDA.  The covariance matrices can thus be written as:  
 

Itr
p kkk ][)1(ˆ ΣΣΣ γγ +−=  ,    k=1, 2                            (3) 

 
where I  is the identity matrix, γ  and p  are the complexity parameter and the shrinkage parameter, respectively.  

In this work, we investigated the use of the RDA classifier for FP reduction in a mass CAD system. 
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2.2.2 CAD System Overview 
 

 
Figure 1.  Block diagram of CAD system for mass detection on FFDMs. 

 
Our CAD system consists of five processing steps: (1) preprocessing by using multi-scale enhancement, (2) pre-

screening of mass candidates, (3) identification of suspicious objects, (4) feature extraction and analysis, and (5) FP 
reduction by classification of normal tissue structures and masses.  The block diagram for the scheme is shown in 
Figure 1.  FFDMs generally are pre-processed with proprietary methods before being displayed to readers.  In an effort 
to develop a CAD system that is less dependent on specific FFDM systems, the raw digital images are used as input to 
our system.  A preprocessing scheme based on a multi-resolution method15 has been developed for image enhancement.  
This scheme consists of three steps.  First, the boundary of the breast is detected automatically by using Otsu’s 
method16.  Second, the Laplacian pyramid is used to decompose the image into multi-scales.  A nonlinear weight 
function is designed to enhance each high-pass component.  Finally, the Gaussian pyramid is used to reconstruct the 
multi-scales.  An example of an original mammogram and the enhanced mammogram are shown in Figs. 2(a) and 2(b), 
respectively.  After preprocessing, gradient field analysis was used to detect the mass candidates from the preprocessed 
FFDMs.  The suspicious objects are then identified by using a clustering based region growing method.  Figures 2(c) 
and 2(d) show the initial detection locations and the grown objects, respectively.  For each suspicious object, eleven 
morphologic features are extracted and rule-based and discriminant classifiers are trained to remove the detected normal 
structures that are substantially different from breast masses.  Global and local multiresolution texture analysis17, 18 are 
performed in each region of interest by using the spatial gray level dependence matrix.  Finally, discriminant 
classification is used to identify potential breast masses.  Further details of this algorithm can be found in the literature19.   

 
In order to obtain the best texture feature subset and reduce the dimensionality of the feature space to design 

an effective classifier, feature selection was applied to the training set.  Stepwise LDA feature selection with Wilks' 
lambda as the selection criterion was employed in our previous study.    Simplex optimization procedure was used to 
choose the best set of feature selection parameters which includes a threshold Fin for feature entry, a threshold Fout for 
feature removal, and a tolerance threshold T for excluding features that have high correlation with the features already in 
the selected pool.  In this study, we compared a new stepwise feature selection procedure with the current method.  In 
the proposed method, a feature selection scheme which combines forward stepwise feature selection and backward 
stepwise feature elimination is used to obtain the best feature subset, using the area under the receiver operating 
characteristic (ROC) curve, Az, as the selection criterion instead of Wilks' lambda.  We evaluated the classifier 
performance using a leave-one-case-out resampling scheme within the training set, the test discriminant scores from the 
left-out cases were analyzed using ROC methodology.  The discriminant scores were input as the decision variable in 
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the LABROC program, which fits a binormal ROC curve based on maximum likelihood estimation.  The performances 
of the RDA classifier and the LDA classifier, both with the new feature selection method, were compared to that of the 
LDA classifier using the Wilks' lambda as the stepwise feature selection criterion in terms of their Az for the 
classification of masses and normal tissue. 

 

   
(a) Original image (b) Preprocessed image 

 
(c) Prescreened image 

   
(d) Identified suspicious objects (e) Detection result (f) Image with detected objects 

 
Figure 2: An example demonstrating the processing steps with our computer-aided mass detection system.  

 
 

3. RESULTS 
 
We randomly separated the cases in our data set into two independent data subsets: 66 and 64 cases.  The 

training and testing were performed using the cross validation method.  The detection performance of the CAD system 

was assessed by free response receiver operating characteristic (FROC) analysis.  FROC curves were presented on a 
per-mammogram and a per-case basis.  For mammogram-based FROC analysis, the mass on each mammogram was 
considered as an independent true object. For case-based FROC analysis, the same mass imaged on the two-view 
mammograms was considered to be one true object and the detection of either or both masses on the two views was 
considered to be a true-positive (TP).  The average test FROC curve was obtained by averaging the FP rates at the same 
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sensitivity along the two corresponding test FROC curves from the 2-fold cross validation.  The CAD system using 
RDA with the new feature selection method achieved an image-based sensitivity of 60%, 65%, and 70% at 1.1, 1.4, and 
1.6 FPs/image, respectively, compared with 1.4, 1.7, and 2.1 FPs/image for the CAD system using LDA with the new 
feature selection method.  The CAD system with stepwise LDA and simplex optimization achieved FP rates of 1.6, 1.9, 
and 2.2 FPs/image, respectively, at the same sensitivities, which were comparable to the FP rates of the CAD system 
using LDA with the new feature selection method.  For case-based FROC analysis, the results are summarized in Table 
1.  Figures 3 and 4 show the comparison of the image-based and case-based average FROC curves of the CAD systems 
using the three different classification methods, respectively. 

 
Table 1. Comparison of case-based performance of three methods.  OFS: stepwise feature selection with simplex 

optimization.  NFS: feature selection combining forward feature selection and backward feature 
elimination. 

 
FPs/image 

TP 
LDA-OFS LDA-NFS RDA-NFS 

70% 0.8 0.7 0.6 
80% 1.4 1.3 1.1 
90% 2.1 2.2 1.8 
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Figure 3. Comparison of image-based FROC curves. 

OFS: stepwise feature selection with simplex 
optimization.  NFS: feature selection 
combining forward feature selection and 
backward feature elimination. 

Figure 4. Comparison of case-based FROC curves. 
OFS: stepwise feature selection with simplex 
optimization.  NFS: feature selection 
combining forward feature selection and 
backward feature elimination. 

 
4. DISCUSSION AND CONCLUSIONS 

 
We previously developed a CAD system for detection of masses on FFDMs.  In this study, we investigated the 

use of an RDA classifier with a new feature selection method.  Our results indicated that the new FP classifier can 
improve the overall performance of our CAD system.  Further work is underway to optimize the feature selection and 
classification scheme and to evaluate if this approach can be generalized to other CAD classification tasks.  
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ABSTRACT 
 

An important purpose of a CAD system is that it can serve as a second reader to alert radiologists to subtle cancers that 
may be overlooked.  In this study, we are developing new computer vision techniques to improve the detection 
performance for subtle masses on prior mammograms.  A data set of 159 patients containing 318 current mammograms 
and 402 prior mammograms was collected.  A new technique combining gradient field analysis with Hessian analysis 
was developed to prescreen for mass candidates.  A suspicious structure in each identified location was initially 
segmented by seed-based region growing and then refined by using an active contour method.  Morphological, gray 
level histogram and run-length statistics features were extracted. Rule-based and LDA classifiers were trained to 
differentiate masses from normal tissues.  We randomly divided the data set into two independent sets; one set of 78 
cases for training and the other set of 81 cases for testing.  With our previous CAD system, the case-based sensitivities 
on prior mammograms were 63%, 48% and 32% at 2, 1 and 0.5 FPs/image, respectively.  With the new CAD system, 
the case-based sensitivities were improved to 74%, 56% and 35%, respectively, at the same FP rates.  The difference in 
the FROC curves was statistically significant (p<0.05 by AFROC analysis).  The performances of the two systems for 
detection of masses on current mammograms were comparable.  The results indicated that the new CAD system can 
improve the detection performance for subtle masses without a trade-off in detection of average masses. 
 
Keywords: computer-aided detection, prior mammogram, mass detection, AFROC analysis 
 

1. INTRODUCTION 
 

Breast cancer is one of the leading causes of cancer mortality among women1.  Studies indicate that radiologists do not 
detect all carcinomas that are visible upon retrospective analyses of the images2-8.  Computer-aided diagnosis (CAD) is 
considered to be one of the promising approaches that may improve the sensitivity of mammography9, 10. 
 
An important application of a CAD system is to serve as a second reader to alert radiologists to subtle cancers that may 
be overlooked.  Masses retrospectively seen on prior mammograms represent the difficult cases that are more likely to 
be missed by radiologists.  To study the ability of a CAD system in detecting subtle cancers, one way is to evaluate its 
accuracy in detecting missed cancers on prior mammograms.  Our previous experiences indicate that CAD schemes 
trained with cancers on current images do not perform well in detecting masses seen retrospectively on prior images11.  
In this study, we designed new techniques to improve the detection performance for subtle masses on prior 
mammograms and also evaluated the new CAD system on both prior and current mammograms by comparing with our 
previously developed CAD system12.   

 
2. MATERIALS AND METHODS 

 
2.1 Materials 
 
All mammograms in this study were collected from patient files in the Department of Radiology at the University of 
Michigan with Institutional Review Board (IRB) approval.  The mammograms were digitized with a LUMISYS 85 
laser film scanner with a pixel size of 50µm×50µm and 4096 gray levels.  The scanner was calibrated to have a linear 
relationship between gray levels and optical densities (O.D.) from 0.1 to greater than 3 O.D. units.  The nominal O.D. 
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range of the scanner is 0–4.  The full resolution mammograms were first smoothed with a 2×2 box filter and 
subsampled by a factor of 2, resulting in images with a pixel size of 100µm×100µm.  These images were used for the 
input of our CAD system.  The data set we used in this study contained 159 patients.  Each exam had two 
mammographic views, resulting in a total of 318 current mammograms and 402 prior mammograms.  Forty-two 
patients had two years of prior examinations. All mammograms were obtained before biopsy.  There were 159 biopsy-
proven masses in this data set.  Figures 1 and 2 showed the histograms of mass sizes and visibility, respectively, for the 
comparison of current and prior masses.  The size of a mass was estimated as its longest diameter seen on the 
mammograms.  The visibility of the masses was rated by an experienced radiologist on a 10-point scale with 1 
representing the most visible masses and 10 the most difficult case relative to the cases seen in clinical practice.  The 
mass size ranged from 3 to 42 mm (mean size: 14.3±8.6 mm on current mammograms and 10.9±6.6 mm on prior 
mammograms) and the visibility ratings extended over the entire range.  For the current mammograms, 140 of the 
masses were visible on both views and 19 visible on only one view.  For the prior mammograms, 100 masses were 
visible on both views and 101 visible only on one view. Therefore, there were 299 visible and 19 invisible masses on 
current mammograms and 301 visible and 101 invisible masses on prior mammograms if the masses were counted 
independently by mammographic view. 

 
Figure 1. Histogram of the sizes for 299 masses on current mammograms and 301 masses on prior in our data set.  

Mass sizes are measured as the longest dimension of the mass by an experienced MQSA radiologist.  The size 
of the masses in this data set ranged from 3 to 42 mm. 

 

 
Figure 2. Histogram of the visibility of the masses in our data set.  The visibility is evaluated on a 10-point rating 

scale with 1 representing the most visible masses and 10 the most difficult case relative to the cases seen in their 
clinical practice.  The masses that were not visible were plotted in the column labeled as “INV”. 
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2.2 Methods 
 
2.2.1 CAD System Overview 
 

 

Figure 3.  Block diagram of a single CAD system for mass detection on mammograms. 
 
 

Our CAD system consists of five processing steps: 1) pre-screening of mass candidates, 2) identification of suspicious 
objects, 3) extraction of morphological and texture features, and 4) classification between the normal and the abnormal 
regions by using rule-based and LDA classifiers.  The block diagram for the CAD system is shown in Figure 3.   

 
For the pre-screening stage, we developed a new prescreening technique in which gradient field analysis was combined 
with Hessian analysis to identify mass candidates.  Both gradient field and Hessian analyses were designed to enhance 
circular structures on mammograms and to suppress the objects with other shapes.  Gradient field analysis used the 
information of gradient field directions and Hessian analysis used the second derivatives by solving for the eigenvalues 
of the Hessian matrix.  After this enhancement filtering, the local maxima within the breast region were identified as 
the mass candidates on each mammogram.  The suspicious structure in each identified location was initially extracted 
by a seed-based region growing method.  An active contour method was then used to further refine the initial 
segmentation.  Morphological, gray level histogram and run-length statistics (RLS) features were extracted from the 
original region of interest (ROI) and the orientation field of the ROI for reduction of FPs.   
 
 
2.2.2 Training and test CAD system 
 
The hold-out method was used for training and testing our CAD system.  We randomly separated the entire data set by 
case into two independent subsets, the training subset including 78 cases with 156 current and 200 prior mammograms 
and the test subset including 81 cases with 162 current and 202 prior mammograms.  The training included selection of 
proper parameters and features for the classifier in the CAD system.  Once the training was completed, the parameters 
and features were fixed for testing.  The new system was trained by using prior mammograms in the training set only.  
The performance of the new system was compared with that of the previous CAD system on the current and prior 
mammograms in the test set.   

 
During training, feature selection with stepwise LDA was employed to obtain the best feature subset and reduce the 
dimensionality of the feature space to design an effective classifier.  The detailed procedure has been described 

Mammogram 

Digitization

Prescreening

Segmentation of Suspicious Structures 

Feature Analysis 

FP Classification 
(rule-based and LDA classifiers)
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elsewhere13.  Briefly, at each step one feature was entered or removed from the feature pool by analyzing its effect on 
the selection criterion, which was chosen to be the Wilks' lambda in this study.  Since the appropriate threshold values 
for feature entry, feature elimination, and tolerance of feature correlation were unknown, we used an automated simplex 
optimization method to search for the best combination of thresholds in the parameter space.  The simplex algorithm 
used a leave-one-case-out resampling method within the training subset to select features and estimate the weights for 
the LDA classifier.  To have a figure-of-merit to guide feature selection, the test discriminant scores from the left-out 
cases were analyzed using receiver operating characteristic (ROC) methodology.  The accuracy for classification of 
masses and FPs was evaluated as the area under the ROC curve, Az.  In this approach, feature selection was performed 
without the left-out case so that the test performance would be less optimistically biased.  However, the selected feature 
set in each leave-one-case-out cycle could be slightly different because every cycle had one training case different from 
the other cycles.  In order to obtain a single trained classifier to apply to the hold-out test subset, a final stepwise feature 
selection was performed with the best combination of thresholds, found in the simplex optimization procedure, on the 
entire training subset to obtain the final set of features and estimate the weights of the LDA.  Note that the entire 
process of feature selection and classifier weight estimation was performed within the training subset.  The LDA 
classifier with the selected feature set was then fixed and applied to the test subset. 

 
 
2.2.3  Evaluation methods 

 
We used a free-response receiver operating characteristic (FROC) method to assess the overall performance of the CAD 
scheme on this image set.  An FROC curve was obtained by plotting the mass detection sensitivity as a function of FP 
marks per image as the decision threshold on the LDA classifier scores varied.  The detected individual objects were 
compared with the “true” mass locations marked by the experienced radiologist, as described above.  A detected object 
was labeled as TP if the overlap between the bounding box of the detected object and the bounding box of the true mass 
relative to the larger of the two bounding boxes was over 25%.  Otherwise, it would be labeled as FP.  The 25% 
threshold was selected as described in our previous study14.   

 
FROC curves were presented on a per-image and a per-case basis.  For image-based FROC analysis, the mass on each 
mammogram was considered an independent true object; the sensitivity was thus calculated relative to the number of 
visible masses by image, which was 149 and 151, respectively, for the current and prior test subset.  For case-based 
FROC analysis, the same mass imaged on the two-view mammograms was considered to be one true object and 
detection of either or both masses on the two views was considered to be a TP detection; the sensitivity was thus 
calculated relative to the number of masses by case, which was 81 and 90, respectively, for the current and prior test 
subset.  The test FROC curve for a given mass subset was estimated by counting the detected masses on the test mass 
subset for the sensitivity. The FP marker rate was estimated from FPs detected in the same test subset.  The average 
number of FP marks per image produced by the CAD system at a given sensitivity was estimated by counting the 
detected objects in these cases at the corresponding decision threshold.   

 
In order to compare the performance of our CAD systems statistically, we employed the alternative free-response ROC 
(AFROC) method15.  In the AFROC method, the FROC data are first transformed by counting the number of false-
positive images (FPI) instead of the FPs per image.  The LDA score of an FPI is determined by the FP object with the 
highest score on the image regardless of how many lower scores FP objects are made on the same image.  The ROCKIT 
curve fitting software and statistical significance tests for ROC analysis developed by Metz et al. 16 can then be used to 
analyze the AFROC data.   
 

 
 

3. EXPERIMENTAL RESULTS 
 

Figures 4 and 5 showed the image-based and case-based FROC curves for detection of masses on prior mammograms, 
respectively.  The case-based sensitivities for detection of masses on the prior mammograms (typically subtle masses) 
in the test subset were 56%, and 35% at 1 and 0.5 FPs/image by using the new CAD system in comparison to 48%, and 
32% at the same FP rates by using the previous CAD system.  The improvement with the new system on prior 
mammograms was statistically significant (p = 0.036).  When the new system was applied to the detection of masses 
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on the current mammograms (typically average masses) in the test subset, the case-based sensitivities were 77% and 
70% at 1 and 0.5 FPs/image in comparison to 75% and 56% at the same FP rates by using the previous CAD system.  
The difference in the two FROC curves for detection of average masses on current mammograms was not statistically 
different (p = 0.184).  Image-based and case-based FROC curves for detection of masses on current mammograms 
were shown in Figures 6 and 7, respectively. 
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Figure 4.  Image-based test FROC curves on prior 
mammograms. Old CAD: detection by the previous 
CAD system trained on both current and prior 
mammograms. New CAD: detection by the CAD 
system trained on prior mammograms. 

 
Figure 5.  Case-based test FROC curves on prior 

mammograms. Old CAD: detection by the previous 
CAD system trained on both current and prior 
mammograms. New CAD: detection by the CAD 
system trained on prior mammograms. 
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Figure 6.  Image-based test FROC curves on current 
mammograms. Old CAD: detection by the previous 
CAD system trained on both current and prior 
mammograms. New CAD: detection by the CAD 
system trained on prior mammograms. 

 
Figure 7.  Case-based test FROC curves on current 

mammograms. Old CAD: detection by the previous 
CAD system trained on both current and prior 
mammograms. New CAD: detection by the CAD 
system trained on prior mammograms. 
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Table 1.  Estimation of the statistical significance in the difference between the FROC performances of the previous CAD 
system trained on both current and prior mammograms and the proposed CAD system trained on prior mammograms.   

 
A1 (AFROC)  

Current Test Set Prior Test Set 
Old CAD 0.51 0.26 
New CAD 0.50 0.31 

p-value 0.184 0.036 
 
 

4. DISCUSSION AND CONCLUSIONS 
 

In this study, we improved the accuracy of a CAD system for detection of subtle masses on prior mammograms.  A 
new prescreening method was developed to improve the sensitivity of mass detection.  A new mass segmentation 
method that combined a seed-based region growing method with active contour method was also designed.  RLS 
features were extracted from the original ROIs and the newly derived orientation field of the ROIs for FPs reduction. 
Our CAD system can significantly improve the performance of mass detection on prior mammograms without a trade-
off in the detection of masses on current mammograms.  It is expected that the new CAD system can increase the 
overall accuracy for detection of subtle early-stage breast cancers. 
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